
ERSATZ-11 FOR OS/2

PDP-11 EMULATOR

VERSION 7.3

Copyright c© 1993–2017 by Digby’s Bitpile, Inc.

All rights reserved.

Release date: 01-Mar-2017

�

�

�

��

�

�

��

�

D Bit • 139 Stafford Road • Monson, MA • 01057 • USA • www.dbit.com

�

�

�

��

�

�

��

�
Digby’s Bitpile, Inc. DBA D Bit
139 Stafford Road
Monson, MA 01057
USA

+1 (413) 267-4600
e11@dbit.com

www.dbit.com

Copyright c© 1993–2017 by Digby’s Bitpile, Inc. All rights reserved.

The following are trademarks of Digby’s Bitpile, Inc.:

�

�

�

��

�

�

��

�

D Bit E11 Ersatz

The following are trademarks or registered trademarks of Digital Equipment Corporation:

DEC DECnet DECtape DECwriter DIGITAL
IAS MASSBUS PDP PDT P/OS
Q-BUS RSTS RSX RT-11 ULTRIX
UNIBUS VT

The following are trademarks or registered trademarks of S&H Computer Systems, Inc.:

TSX TSX-Plus

Other product, service, and company names that appear in this document are used for identification purposes only,
and may be trademarks and/or service marks of their respective owners.

Contents

1 Introduction 1

1.1 Emulated block device types . 2

1.2 Emulated sequential device types . 3

1.3 Emulated serial device types . 3

1.4 Emulated network device types . 4

1.5 Emulated DDCMP device types . 4

1.6 Miscellaneous device types . 4

1.7 PC hardware support . 5

1.8 Device names . 6

1.9 Filenames . 7

1.10 Time durations . 7

1.11 Notes . 8

1.11.1 Interrupts . 8

1.11.2 Host systems . 8

1.11.3 Copyright and licensing . 9

1.12 Acknowledgments . 9

1.13 History . 10

2 Installation and Configuration 12

2.1 System requirements . 12

2.2 Installation . 12

2.3 Configuration . 13

3 Transferring the PDP-11 Operating System to the PC 16

3.1 SCSI disks . 16

3.2 SCSI tapes . 17

3.3 Kermit . 17

3.4 Ethernet . 17

3.5 ASCII serial dump . 18

3.6 System-specific notes . 19

3.7 Utilities . 19

4 Disk Devices 21

4.1 Disk cache . 22

4.2 Padding short volumes . 22

4.3 PC disk devices . 22

4.3.1 Disk image files . 23

4.3.2 Multiple concatenated disk image files . 24

4.3.3 Raw floppy disk drives . 24

4.3.4 RAM disk drives . 25

4.3.5 Disks with intentionally bad blocks . 25

4.3.6 Null disk drives . 26

4.4 Emulated PDP-11 disk devices . 27

4.4.1 DB: — RP04, RP05, RP06 . 27

4.4.2 DC: — RC11/RS64 . 28

4.4.3 DD: — DL11/TU58 . 28

4.4.4 DF: — RF11/RS11, DDC DMS-11X/SSDM 100 (called RF: in RT-11) 29

4.4.5 DK: — RK02, RK03, RK05 DECpack (called RK: in RT-11) 30

4.4.6 DL: — RL01, RL02 . 30

4.4.7 DM: — RK06, RK07 . 31

4.4.8 DP: — RP02, RP03 . 31

4.4.9 DR: — RM02, RM03, RM05, RM80, RP07 . 32

4.4.10 DS: — RS03, RS04 . 33

4.4.11 DT: — TU55, TU56 DECtape . 33

4.4.12 DU: — MSCP disks . 33

4.4.13 DX: — RX01 . 34

4.4.14 DY: — RX02, “RX03” . 35

4.4.15 FX: — Fox 2/30 “drum” . 36

4.4.16 HD: — Hypothetical disk . 36

4.4.17 PD: — PDT-11/150 RX01 . 37

4.4.18 QX: — Terak 8510/a single-density disk . 37

5 Tape Devices 38

5.1 PC tape devices . 38

5.1.1 Tape image files . 38

5.1.2 RAM tape drives . 39

5.1.3 Null tape drives . 39

5.2 Emulated PDP-11 tape devices . 40

5.2.1 CT: — TU60 DECcassette . 40

5.2.2 MM: — TE16/TU16, TU45, TU77 . 40

5.2.3 MR: — TR79 (HP7970E) . 41

5.2.4 MS: — TK25, TS04, TS05, TU80 . 42

5.2.5 MT: — TS03, TU10 . 42

5.2.6 MU: — TMSCP tapes . 43

6 Serial Lines 44

6.1 PC serial devices . 45

6.1.1 Serial options common to all devices . 45

6.1.2 Video consoles . 45

6.1.3 Line printer emulation using OS-supplied print drivers . 46

6.2 PC serial pseudo-devices . 48

6.2.1 Hayes-compatible dialup modems . 48

6.2.2 Kermit file-transfer protocol . 48

6.2.3 Throttled I/O . 48

6.2.4 Multiple physical ports on one emulated line . 49

6.3 Emulated PDP-11 serial devices . 50

6.3.1 LP: — LP11, LPV11 line printer ports . 50

6.3.2 TT: — DL11, DLV11 single serial line units . 50

6.3.3 XU: — DU11, DUV11 single serial line units . 51

6.3.4 YC: — DC11 single serial line units . 51

6.3.5 YG: — DM11 16-line single-speed serial multiplexer . 51

6.3.6 YH: — DH11 16-line serial multiplexer . 52

6.3.7 YJ: — DJ11 16-line serial multiplexer . 52

6.3.8 YM: — DM11BB modem control option for DH11 or DM11 53

6.3.9 YV: — CXA16, CXB16, CXF16, CXF32, CXY08, DHF11, DHQ11, DHU11, DHV11, DHZ11
8/16/32-line serial multiplexers . 53

6.3.10 YZ: — DZ11, DZQ11, DZV11 4/8-line serial multiplexers . 54

6.3.11 PT: — PDT-11/130 TU58 . 55

7 Miscellaneous Devices 56

7.1 Installable user-written plug-in emulation modules . 56

7.2 ROM devices . 57

7.3 CD: — CD11 punched card reader . 58

7.4 CR: — CR11, CM11 punched card reader . 59

7.5 DO: — PC file access pseudo-device . 59

7.6 IX: — IEU11A, IEQ11A dual GPIB interface . 60

7.7 KD: — M8644 countdown register board . 60

7.8 KG: — KG11A communications arithmetic board . 61

7.9 KP: — KW11P programmable clock . 61

7.10 OA: — DR11C, DRV11 digital I/O ports . 62

7.10.1 ETHER: — Point-to-point IPL using Ethernet . 62

7.10.2 NULL: — Null device . 62

7.11 PP: — PC04 paper tape punch . 62

7.12 PR: — PC04 paper tape reader . 63

7.13 TK: — Terak bitmapped graphics display . 63

7.14 VR: — VT30 color graphics display processor . 64

7.15 VT: — VT11 vector graphics display processor . 64

7.16 XA: — DR11W, DR11B, DRV11WA, DRV11B digital I/O ports . 65

7.16.1 ETHER: — Point-to-point IPL using Ethernet . 66

7.16.2 NULL: — Null device . 66

7.17 XN: — DN11 auto-dialer controller . 66

8 Commands 68

A Keyboard Script Language 89

A.1 Default keyboard layout . 89

A.2 Keyboard script statement descriptions . 90

A.3 Key names . 95

A.4 Flags . 97

A.4.1 Read/write flags . 98

A.4.2 Read-only flags . 98

B Debugging Features 99

B.1 Displaying and modifying memory . 100

B.2 Assembly and disassembly . 101

B.3 Registers . 101

B.4 Breakpoints and single-stepping . 101

B.5 Memory mapping . 102

B.6 Device logging . 102

B.7 Loading and dumping memory . 102

B.8 Switch and display registers . 103

C Installable Plug-ins 104

C.1 Calling conventions . 104

C.2 Entry conditions . 105

C.3 Exit conditions . 105

C.4 Building plug-in modules . 105

C.5 Entry points . 106

C.5.1 Ersatz-11 environment . 106

C.5.2 I/O device emulation . 107

C.5.3 PDP-11 instruction emulation . 109

C.5.4 PC memory management . 112

C.5.5 Fork queue . 112

C.5.6 Thread management . 113

C.5.7 Thread management . 114

D Microcomputers 115

D.1 PDT-11/130 . 115

D.2 PDT-11/150 . 115

D.3 Terak 8510/a . 116

E PDP-11/74 and PDP-11/45 Multiprocessing (EXPERIMENTAL/UNSUPPORTED) 117

E.1 CPUs and console terminals . 118

E.2 Busses . 119

E.3 II: — DIP11A interprocessor interrupt and sanity timer . 119

E.4 Configuring RSX-11M-PLUS for multiprocessing . 120

E.5 Multiple PDP-11s with non-shared memory . 121

E.6 DPDISK: — Dual-ported disk . 122

E.7 DPTAPE: — Dual-ported tape . 122

E.8 FASTBUS: — Fastbus memory on detachable Unibus segment . 122

E.9 IPL: — Internal inter-processor link . 123

F Dates and Times 124

F.1 Booting . 124

F.2 PC clock . 124

F.3 Year 2000 issues . 125

F.3.1 KDJ11E TOY clock . 125

F.3.2 Dates in RT-11 and TSX-Plus . 125

F.3.3 Dates in RSX . 126

F.3.4 Dates in RSTS/E . 126

F.3.5 Dates in Fuzzball . 126

F.3.6 Dates in Unix . 126

Chapter 1

Introduction

Ersatz-11 is a software replacement for PDP-11 minicomputer systems. When running on typical PC hardware, it
substantially outperforms any PDP-11 model ever produced by DEC, outpaces all known aftermarket clone CPUs,
and is the fastest PC-to-PDP-11 software emulator available at any price. Yet it is the most inexpensive PDP-11
replacement product on the market.

The achievable performance continues to increase as new IA32-compatible CPUs are released, so future upgrades
are possible without requiring that a new PDP-11 CPU board be purchased. The emulated system is configured
using simple commands, allowing the flexibility to duplicate almost any existing system easily. The configuration
of the emulated system can be changed at any time, even while the system is running. Wherever possible, E11
provides useful defaults, to simplify the configuration process. It will choose between Q-bus and Unibus controller
models depending on the emulated CPU type, and will auto-compute “floating” CSR and vector addresses, for
devices that use them. It also chooses the default interrupt priority level according to the CPU type, since in many
cases the Q-bus version of a peripheral interrupts on level 4 even though the original Unibus version uses level 5.
In all cases these defaults can be overridden with SET commands.

Ersatz-11 emulates the entire PDP-11 system in software, including most standard disks, tapes, serial devices, and
network interfaces. Facilities are provided to integrate non-standard device emulations into E11 when necessary.
E11 is intended to boot and run any PDP-11 operating system. It has been tested with RT-11 (all flavors), RSX-
11M, RSX-11M-PLUS, RSTS/E, IAS, TSX-Plus, 2.9BSD and 2.11BSD UNIX, DSM-11, DOS/BATCH, Fuzzball
(BOS), the Fox 2/30 OS, and XXDP+.

Emulated configuration

• PDP-11/03, PDP-11/04, PDP-11/05, PDP-11/20, PDP-11/23, PDP-11/24, PDP-11/34a, PDP-11/40, PDP-
11/44, PDP-11/45, PDP-11/53, PDP-11/60, PDP-11/70, PDP-11/73, PDP-11/74, PDP-11/83, PDP-11/84,
PDP-11/93, or PDP-11/94 CPU with individually selectable features

• FP11/FPF11/FPJ11 (etc.) floating point processor, FIS floating instruction set option, KE11A/B extended
arithmetic element (EAE)

• 4 MB main memory

• Many different models of disks, tapes, serial and network devices (see tables below).

1

2 Introduction

1.1 Emulated block device types

dev name controller type(s) drive type(s)

DB: RH11, RH70 RP04/05/06 pack drive

DC: RC11 RS64 fixed-head disk

DD: DL11 TU58 cartridge tape

DF:/RF: RF11, DMS-11X RS11 fixed-head disks, DDC SSDM 100 RAM disk

DK:/RK: RK11D RK02, RK05 front-loading cartridge drive

DL: RL111, RLV11, RL01, RL02 top-loading cartridge drive
RLV12

DM: RK6112 RK06, RK07 top-loading cartridge drive

DP: RP11C RP02, RP03 pack drive

DR: RH11, RH70 RM02/03/05 pack drive, RM80/RP07 Winchester

DS: RH11, RH70 RS03/RS04 fixed-head disk

DT: TC11 TU55/TU56 DECtape

DU: UDA50, KDA50 RA60, RA70–73, RA80–82, RA90/92, RC25, RD31–32, RD50–54,
RQDX3, RQZX1 RX33/RX50 MSCP disk

DX: RX11, RXV11 RX01 8” SS SD floppy

DY: RX211, RXV21 RX02 8” SS DD (or DS DD) floppy

FX: Fox 2/30 DBI DDC 6200 “drum” (actually a fixed-head disk)

HD: (virtual) Ersatz-11 hypothetical disk with simplified interface (for HD.SYS)

PD: RXT11 RX01 8” SS SD floppy (PDT-11/150 microcomputer)
1 “RL211” was used as a marketing name in systems with RL02 drives, but is the identical controller to the RL11.
2 “RK711” was used as a marketing name in systems with RK07 drives, but is the identical controller to the RK611.

Introduction 3

1.2 Emulated sequential device types

dev name controller type(s) drive type(s)

CT: TA11 TU60 DECassette dual cassette tape

MM: RH11/RH70 + TM03 TE16, TU45, TU77 Massbus magtape drive

MR: TR79F TR79 (HP7970E) magtape drive

MS: TS11, TSU05/TSV05, TS04, TS05, TU80 magtape drive,
M7454, TQK25 TK25 cartridge tape drive

MT: TM11 TS03, TU10 magtape drive

MU: KLESI, TQK50, TQK70 TU81, TK50, TK70 TMSCP tape

PR:/PP: PC11 PC04 high speed paper tape reader/punch

1.3 Emulated serial device types

dev name port type(s) description

TT: DL11, DLV11 single serial line unit

LP: LP11, LPV11 line printer interface

XU: DU11, DUV11 async/sync serial line unit

YC: DC11 single serial line unit

YG: DM11 serial DMA multiplexer

YH: DH11 serial DMA multiplexer

YJ: DJ11 serial PIO multiplexer

YM: DM11BB modem control multiplexer option for DM11/DH11

YV: CXA16, CXB16, CXF16, CXF32, CXY08 serial DMA multiplexer
DHF11, DHQ11, DHU11, DHV11, DHZ11

YZ: DZ11, DZQ11, DZV11 serial PIO multiplexer

PT: PDT-11/130 serial line for TU58

4 Introduction

1.4 Emulated network device types

dev name port type(s) description

NI: NI1010A, NI2010A Interlan Unibus/Q-bus Ethernet interface

XE: DELUA, DEUNA Unibus Ethernet interface

XH: DELQA, DEQNA Q-bus Ethernet interface

1.5 Emulated DDCMP device types

dev name port type(s) description

XD: DMP11, DMV11 multidrop network link

XM: DMR11, DMC11 point-to-point network link

1.6 Miscellaneous device types

dev name port type(s) description

CD: CD11 punched card reader

CR: CR11, CM11 punched card reader

DO: (virtual) Ersatz-11 interface to host file system (for DO.SYS/
DOS.TSK/LNX.TSK)

IX: IEU11A, IEQ11A dual GPIB ports

KD: M8644 CDR countdown registers

KG: KG11A communications arithmetic board

KP: KW11P programmable clock

OA: DR11C, DRV11 programmed digital I/O board

TK: Terak bitmapped graphics display

VR: VT30 color graphics display

VT: VT11 vector graphics processor

XA: DR11W, DR11B, DRV11WA, DRV11B DMA digital I/O board

XN: DN11 auto-dialer controller

Introduction 5

1.7 PC hardware support

• Block devices: disk image files, raw floppy drives, RAM disks

• Tape devices: tape image files, RAM tapes

• Character devices: Emulated VT100 on SVGA (can flip between up to 12 virtual screens)

This is the full version of Ersatz-11. It has no limitation on commercial use. It is licensed software, and may
be used and copied only in accordance with the terms of the D Bit software license, which is printed on the disk
packet.

The emulator speed depends on the application and the host system. In general E11 on any speed Pentium III,
Pentium IV, or Athlon runs on the order of ten to twenty times the speed of a PDP-11/93. E11’s disk I/O is much
faster than that of real PDP-11s, especially when run under an operating system which provides good disk caching.

The FP11 floating point processor emulation currently requires a math coprocessor (which is built into all current
80x86 CPUs anyway). If the PC has none, then the emulated PDP-11 will have no FPP either. Intel Pentium
CPUs that have the floating point divider bug are detected and a workaround is used to get correct results at a
slight speed penalty (for DIVF/DIVD only). The FIS emulation does not require a math coprocessor.

The system has been tested under the XXDP+ diagnostic monitor. It passes the KD11EA diagnostics DFKAA,
DFKAB, and DFKAC, and the FP11A diagnostics DFFPA, DFFPB, and DFFPC. It does not work with MMU
diagnostics due to the absence of the maintenance mode. It has been found that passing or failing DEC diagnostics
does not bear much relation to actual operation with real-world software and operating systems, because the
diagnostics are designed mainly to detect known failure modes of real DEC hardware, and not to verify new
implementations.

6 Device names

1.8 Device names

With the exception of PC files, just about every I/O device used by Ersatz-11 has a device name ending in a colon
(“:”). This applies to both emulated PDP-11 devices and real PC hardware devices. Each device (disk unit, serial
line, etc.) has a name that normally conforms to the following prototype:

dev[c][u]:

dev Alphabetic device name identifying the device type: always two letters for emulated PDP-11 devices,
variable for PC hardware devices.

c Optional letter (A–Z) identifying which of the (potentially) multiple controllers of the same type is control-
ling this particular device. Specified only with controllers that can support multiple devices. A reasonable
default is used if it is omitted, generally the first or only controller of that type. The controller letter is
always displayed in output from the SHOW command for devices where it is meaningful, so the name given
by SHOW will have the letter even if you didn’t specify one.

u Optional unit number identifying the device; default is the first unit on the controller. The unit number
should be omitted when referring to the controller as a whole (e.g. SET commands).

The two-letter device names for emulated PDP-11 devices are taken from the names used by the popular PDP-11
operating systems. Where possible, synonyms are available to ensure that the device names will be familiar to
users of each operating system. For example, DELUA ports may be referred to using either the RSTS/RSX name
(“XE:”), or the RT-11 name (“NU:”), and similarly, RK05 disk units may be called “DK:” or “RK:”.

However E11 uses a more consistent naming system than these operating systems do, since the first two letters of
a PDP-11 device name always depend on the controller type.

In some cases this leads to differences, for example “TTu:” (or “KBu:”, which is a synonym) refers specifically to a
DL11/DLV11 serial port, while in RSX and RSTS, all terminal ports are mapped to one of these names regardless
of the port type. But in E11, a serial port located on a DZ11/DZV11 is always “YZcu:”. As a result, the device
names used by E11’s command language may not necessarily be identical to those used by the operating system
for the same devices.

The device names for PC hardware are the same as those used by DOS for those devices that actually have names
in DOS. So CON: refers to the first video session, COM1:–COM4: are serial ports (AUX: is a synonym for COM1:),
LPT1:–LPT4: are parallel ports and (PRN: is a synonym for LPT1:). For other devices a short mnemonic name
is used, with an optional letter identifying the controller for devices like multi-port serial interfaces where a port
number alone isn’t enough to uniquely identify the device. Note that PDP-11 unit numbers always start at 0 (TT0:,
DU0:, MU0: etc.) while PC unit numbers generally start at 1 (COM1, LPT1).

For a very few devices (both real and emulated), identifying the controller and unit isn’t enough since there
may be multiple slaves attached to the same master unit. In this case the device name is expanded to look like
“dev[c][u][s]:”, where s is the optional slave number within unit u. This form is rarely used since it only makes
sense on emulated Massbus tape drives with multiple slaves attached to the same formatter, or on SCSI devices
with multiple LUNs within the same target such as the old Adaptec ACB-4000A SCSI/MFM bridge boards. In
any case if s is omitted (as well as the preceding underscore) a reasonable default is used.

The ASSIGN, DEASSIGN, MOUNT, DISMOUNT, and SHOW commands can usually accept a PDP-11 device name with a
range of unit numbers, such as “DU0-3:”. With this syntax, every unit in the range is created, deleted, or displayed
with just one command. For ASSIGN and MOUNT, the PC device name (or filename) is automatically modified for
the second and later units using sensible rules which will usually give a useful result. This can be handy for things
like populating a serial multiplexer.

Filenames 7

1.9 Filenames

A few rules apply to PC files referenced using E11 commands. When a reference is made to an existing file, without
a drive name or directory path in the file specification, E11 searches for it first in the current directory, then in the
directory where the E11 executable file is located, then in the directories listed in the PATH environment variable.
A filename may be enclosed in single (’) or double (”) quotes to allow lower case or special characters in the name.
Path elements must be separated by “\” characters, except when the file specification is enclosed in single or double
quotation marks in which case either forward slashes or backslashes may be used. Each command that takes a
filename has a default extension which is added when none is supplied by the user.

Typical default extensions are:

.ext type of file relevant command

.CMD command file @[d:path\]filename

.DLL dynamic link library INSTALL

.CRD punched card binary image ASSIGN CD:/CR:

.DSK disk image file MOUNT

.INI init file /INITFILE switch

.LOG log file LOG

.PAP paper tape image file MOUNT PR:/PP:

.PDP binary memory image LOAD, DUMP

.TAP tape image file MOUNT

.TIM opcode timing file SET THROTTLE

.TXT punched card text file ASSIGN CD:/CR:

1.10 Time durations

Ersatz-11 has many commands and switches which accept a duration of time. For example, SET THROTTLE DELAY=5

throttles the CPU using 5-microsecond delays, and SET TELNET: IDLE=300 sets a 300-second idle timeout for Telnet
sessions. Prior to version 7.3, each command chose its own units, and times had to be given as integers. These units
are still the defaults, but they may not be overridden using the suffixes NSEC, USEC, MSEC, and SEC (which must
appear immediately after the number with no white space in between), and the number may contain a decimal
point.

8 Notes

1.11 Notes

1.11.1 Interrupts

The emulated interrupt system is somewhat complicated, mainly due to some assumptions in DEC OSes (particu-
larly RSX and RT-11 SJ) about how many instructions are guaranteed to be executed after writing a command to
a device CSR, before the device will complete the operation and interrupt. On the PC, some I/O may complete
much faster than on a real PDP-11, and it even appears to be instantaneous with RAMdisks/RAMtapes (and
disk/tape image files under MS-DOS), since the I/O is performed synchronously between PDP-11 instructions.
Unfortunately this causes trouble with some drivers that depend on being guaranteed the time to execute a certain
number of instructions before the completion interrupt occurs.

This is not actually a bug if it works on all real PDP-11 models, but it leads to incorrect operation if the emulated
hardware appears to be fast enough to complete an operation before the expected minimum number of instructions
is executed. Under testing, RSX appeared to issue WAIT instructions for TTY output which was assumed not to
have completed yet a few dozen instructions after writing a character to a DL11 (thus hanging the system), and
similarly the RT-11 SJ (but not FB/XM) keyboard interrupt service routine runs with interrupts enabled on the
assumption that another keyboard interrupt couldn’t possibly happen before the current ISR finishes. When this
does happen the ISR recurses and the characters are put in the buffer in reverse order, which was happening with
VT100 keypad keys in early versions of E11.

The solution to these problems is to use a queueing system, so that the interrupt (and in many cases the transfer
itself) doesn’t occur until a pre-set number of instruction fetches after the instruction that started the transfer. The
default delays are intended to be adequate for most users. However when troubleshooting with custom operating
systems, this is a good place to experiment if E11 appears to work with your application using certain emulated
devices, but not others. Much less trouble has been experienced with disks and tapes, so by default most of them
are set to execute all functions in one instruction time. The RSX MSCP initialization sequence is an exception,
so the default delays are tuned appropriately. The RK11 handler in DOS/BATCH requires an unusually slow
disk controller, so in order to use that you must first issue a command like SET DELAY RK11D *=8000 to make all
RK11D disk commands take 8000 instruction fetches to complete. For reasons given above, the character-at-a-time
devices have larger default delay counts. RK05/06/07 seek completion attentions may be delayed still further
beyond acknowledging the seek command, so as not to confuse overlapped seek drivers. However you’ll get faster
results using a non-overlapped driver if one is supplied with your OS. Since all your emulated disks will typically
be on one physical PC disk with only one head carriage, there’s nothing to overlap anyway.

1.11.2 Host systems

D Bit occasionally receives inquiries from users who want Ersatz-11 to be ported to architectures other than the
80x86. There are no plans to port E11 to other processors. Besides the expense and difficulty of moving software
between radically different host systems, D Bit is considers its ability to provide adequate customer support to be
of primary importance, and this would not be possible if there were too many different versions of E11.

Rather than produce poorly supported versions of E11 for a myriad of host systems which provide more hindrance
than help to the task of emulating a PDP-11 system, D Bit has chosen to focus its efforts on the 80x86 architecture
under Linux, OS/2, Win32, and DOS. This hardware has the best price:performance ratio of anything currently
available, it’s what the vast majority of E11 customers are already running anyway, and its programming architec-
ture lends itself well to efficient PDP-11 emulation. The supported operating systems are inexpensive and easy to
install (some more than others), and they provide a good set of helpful services to E11 but also allow easy access
to hardware so that Ersatz-11 has the control it needs, adequate DOS emulation is available in a variety of other
operating systems, so that again, most users already have a system which is capable of running E11.

Notes 9

1.11.3 Copyright and licensing

Ersatz-11 is Copyright c© 1993–2017 by Digby’s Bitpile, Inc. All rights reserved. This software is provided under
a license, and may be copied and used only under the terms of the license text printed on the diskette envelope.

1.12 Acknowledgments

D Bit would like to thank the many people who provided technical help and debugging input. Bob Supnik, formerly
of DEC, and Alan Sieving of QED provided valuable details of poorly documented PDP-11 instruction set semantics.
Many people have helped debug Ersatz-11 with their configurations. Frank Borger’s (U. Chicago) work with RT-
11SJ and IAS has been particularly impressive, as have Paul Koning’s (Dell) insights into RSTS and Eduard
Vopicka’s (Prague University of Economics) and John Shilling’s (JSA) help with RSX. The late Chip Charlot
(formerly of Mentec), and Dave Carroll of Mentec have provided invaluable technical help and encouragement.
Johnny Billquist was very helpful with getting the PDP-11/74 emulation working with RSX, and in debugging the
DELUA emulation and the PSW T-bit.

10 History

1.13 History

31-Oct-1993; development started.

V0.8 BETA, 29-Mar-1994; initial release.

V0.9 BETA, 05-Jul-1994; many bug fixes (mainly trap handling, MMU emulation, DIV instruction, and VT100
reverse video), added RX211 emulation, multiple DL11s, and 50 Hz KW11L mode.

V1.0 BETA, 14-Nov-1994; more bug fixes, added FP11A, RK611/RK06–07, LP11, D-space, and supervisor mode
emulation. Also CALCULATE, HELP, INITIALIZE, LOG, SET/SHOW CPU, SET DR LPTn:, SET SCROLL, SHOW MMU com-
mands, VT100 graphics/underline, changed to .EXE file (ran out of space in unified code/data segment in .COM
file).

V1.1 BETA, 22-Mar-1995; still more bug fixes (IAS finally works), DELUA Ethernet emulation, disk LOGging,
indirect command files, workaround for Pentium FDIV bug, help text moved to file, Russian HD: device (and RT-11
driver), PC11, display general registers on parallel port LED board.

V2.0 DEMO, 20-Jul-1997; many bug fixes as usual, limited 22-bit MMU with and without Unibus map. MMU
SR1 mechanized, TOY clock, CPU emulation extended to include 11/24, 11/44, 11/45, 11/70, 11/94. Added
RXT11/RX01, RK02/RK05, RS03/RS04, TU56, TU10, TU60, TE16/TU45/TU77 device emulation. Definable
keyboard. Loadable ROM/EEPROM. Many new floppy types, which may now be used with any disk controller
type.

(Many intermediate V2.0x full versions were released throughout 1997 and 1998.)

V2.1 Full version, 01-Apr-1999; runs in protected mode with full 22-bit MMU. MSCP, TMSCP, RMxx/RPxx,
TS11, DZ11/DZV11, DHU11/DHV11, DEQNA device emulation. Support for Q/Unibus bridges. Boca, Chase
PCI-FAST, Digi, RocketPort/PCI, SBMIDI serial drivers. NE2000 Ethernet driver. Physical port drivers for SCSI
disk/tape drives, RAM disks/tapes. FLOATING address calculation, DEFAULT controller types. PDP-11/23, 53,
73, 83, 84, 93 CPU types added. Demo/Lite versions have a subset of these features.

V2.1A, 01-Oct-1999; concatenated image files to form one large disk, CDROMx: driver, other minor improvements
and bug fixes.

V2.2, 01-Apr-2000; DH11, DM11BB, DR11C, VT11, Interlan NI1010A/NI2010A emulation, FIS instruction set,
KE11A/B EAE, mini-assembler. Hardware drivers added or extended for DCI-1300 digital I/O boards, SVGA
graphics, ISA RocketPorts, BCI-2004/BCI-2104 bus adapters, multiple physical serial devices. SCSI disk partition-
ing added. Most disk “write headers” commands perform low-level format. Documentation overhauled.

V3.0, 01-Oct-2000; Linux version released. DMS-11X RAM disk, SET THROTTLE, Data Products printer support,
PCI LPT cards, configurable interrupt priorities. Additional SET CPU options to support early CPU models.

V3.1, 01-Jul-2002; Telnet server, TU58 cartridge tapes. Demo version for Linux, expanded limits on Demo/Lite
versions.

V4.0, 01-Apr-2004; flat 32-bit version. DJ11, M8644 countdown register emulation, command line editing/recall.
DOS version adds drivers for RocketPort “Universal” PCI boards, RealTek RTL8139 Ethernet ports, and autosizing
in CDROM: (so DVDs work too). Win32-style “PE” .EXE format DLLs supported.

V4.0A, 01-Jun-2004; bug fixes for new flat version. Experimental Catweasel floppy driver. Win32-style DLL
support improved and documented.

History 11

V4.0B, 15-Oct-2004; bug fixes. SET MEMORY, SET CPU USERMODE, SET CPU 03.

V4.1, 01-Sep-2005; bug fixes. SET CPU PRIO. DR11W, KW11P, and VT30 emulation. Drivers for LPT port
as digital I/O device, and PCI 11W DMA board. THROTTLE: pseudo-driver. SET TELNET: BANNER=file.
Support for extended CON: screen sizes, SHOW VIDEO. Timer code rewritten for greater precision, with Linux
version using /dev/rtc if available.

V5.0, 01-Feb-2006; Win32 native version. CPU speedups. SET CPU 74, SET CPU 60, SET CPUS=n. SET
TELNET: TERMINAL=type. LOG /NOTIMESTAMPS. ASSIGN . . . /CD:x /CTS:x /DSR:x /RI:x /SRD:x (and
SET equivalents). Up to 8 LP11s in full version. Many bug fixes.

V5.1, 01-Aug-2007; disk and tape caching. Raw BIOS hard disks and partitions. Driver for DCI-4100 digital I/O
boards, many improvements to digital I/O board emulations and drivers. Bit 3 Q-bus adapters. Newer Q-/Unibus
adapters from The Logical Company. SHOW PCI.

V5.2, 01-Aug-2008; mouse copy/paste. SET/SHOW PCLOG. SET CPU NOMMU speedups. ADDPCI. SCAN.
Delays after bus adapter cycles. Emulated DMA to I/O page. New mP features for PDP-11/45s: FASTBUS:,
IPL:, SET CPU NOSHAREDMEM.

V5.3, 01-Sep-2009; ATTACH BCI: and ASSIGN . . . TELNET: in Win32 version. 64-bit memory addressing in
DOS version. DIR, CD, TYPE commands. FAT file system driver in stand-alone version. Ethernet tunneling over
UDP in Linux and Win32 versions.

V6.0, 01-Nov-2010; OS/2 native version. TCP/IP stack and drivers for NICs based on PCnet-PCI, Tulip, RTL8139,
and Velocity chips in DOS and stand-alone versions. Ethernet booting. DELQA emulation (was DEQNA). TELS-
INGLE: and TELCLIENT:. LOG /NOBUFFERING and LOG /LAST:n. OpenGL graphics driver and new
installer for Windows (and OS/2).

V6.1, 01-Dec-2012; EDIT. /MAC on all network devices (was just UDP:). PT: and SET CPU PDT11 for PDT-
11/130,150 emulation. TK: and QX: for Terak 8510/a emulation. SET THROTTLE FILE=file. LASTSIMI-
LARYEARBEFORE yyyy.

V7.0, 31-Oct-2013; E11’s 20th birthday. CD11, CR11, DMR11/DMC11, DN11, DU11, IEU11 (framework only),
and KG11 emulations. HAYES:, OSPRINT:, and SCC: drivers. Unit number ranges. VT100 smooth scroll, SET-
UP mode, and scrollback buffer. VT101 and VT102 emulation. NULL: devices for most device types. ASYNCn:,
DIGn:, GPIBn:, PRINTn:, and SYNCn: host-OS-independent nicknames. Increased use of helper threads. LOG
/PC. Disk logging calculates starting block numbers. LoadModule, GetSymbol, UnloadModule plug-in calls.

V7.1, 01-Jun-2014; DMP11/DMV11 emulation. TCP/UDP transport for DDCMP devices. Kermit clients. BAD:,
DPDISK:, and DPTAPE: drivers. /NOPAD, /PAD:NULL, and /PAD:RAM. SET PCLOG n.

V7.2, 01-Dec-2016; Intel Gigabit Ethernet driver, TAB filename completion on command line, SET TELNET:
IDLE=n, FTP server, stand-alone version’s .ISO file is dual-bootable on either CD-ROMs or flash drives.

V7.3, 01-Mar-2017; DC11 SLU, DM11 serial mux, TR79F magtape controller, ATA/SATA/ATAPI disk driver,
PCI-DIO-96 driver, BREAKPOINT, HISTOGRAM, POWERFAIL.

Chapter 2

Installation and Configuration

2.1 System requirements

Installation of Ersatz-11 requires the following:

• Intel 80x86-compatible PC with 80386 or later CPU

• At least 6 MB of available system memory (any additional memory may be used for RAM disks/tapes and
disk/tape caches).

• 2 MB of available disk space for Ersatz-11 itself, plus space for all disk image files (equivalent to the size of
the disk drives they replace).

• IBM OS/2 2.0 or later, or any version of eComStation or Blue Lion / ArcaOS.

2.2 Installation

Installation is very straightforward. Simply insert the distribution disk into a CD or DVD drive, open a command
prompt window, and type:

C:\>d:install

If the CD/DVD drive is not drive D:, substitute the actual drive name in the above command. The installation
program will prompt for a directory into which to install, and will then extract all the E11 files from the distribution
disk. The files are as follows:

12

Installation and Configuration 13

file contents
E11.EXE executable
E11.HLP “HELP” data file
E11.PDF this document, readable with Adobe Acrobat
E11FONTS.FON fonts for E11 terminal sessions
HD*.* source and binaries for RT-11 HD: driver
DO*.* source and binaries for RT-11 DO: driver
KED.CMD keyscripts for using cursor keys with KED/EDT
XHBOOT.BIN D Bit implementation of DELQA boot/diag ROM
PDT130.PDP D Bit implementation of PDT-11/130 driver ROM
PDT150.PDP D Bit implementation of PDT-11/150 driver ROM

E11’s home directory is also a sensible place to put disk image files (*.DSK) and the E11.INI initialization file (see
below), since E11 will look there if these files aren’t found in the current working directory.

2.3 Configuration

Ersatz-11 is configured using a text file named “E11.INI,” which is normally kept in E11’s home directory. This
file may be created using any text editor. It contains a series of commands which are read and processed in order
every time E11 starts up. Lines which start with a “;” or “!” character are treated as comments, and ignored.
Each individual serial line or emulated disk or tape unit is created with a one-line command. Typically there will
also be additional commands to define the emulated CPU model, set any non-standard device addresses or device
types, and finally the initialization file usually ends with a BOOT command which boots the emulated PDP-11’s
operating system. The table below summarizes which command is used to add each device type to the system.
The syntax of each specific command is described in chapter 8.

device type command to create
CPU SET CPU
disk drive MOUNT
tape transport MOUNT
TTY line ASSIGN
line printer ASSIGN
network port ASSIGN
bus adapter ATTACH
digital I/O board ASSIGN
user emulation module INSTALL

Below is a typical E11.INI file. This file is read by Ersatz-11 every time it starts up, and the commands are
executed in sequence, as if they were typed at the keyboard.

;

; Set PDP-11/44 CPU model

;

set cpu 44

;

; Mount disk and tape units

;

mount du0: rsx11m.dsk

mount du1: ra81.dsk

14 Installation and Configuration

mount mm0: dump.tap

;

; Add extra DL11 terminal lines and LP11 printer port

;

assign tt1: con2:

assign tt2: con3:

assign lp0: osprint:

;

; Boot MSCP disk unit 0 (and switch keyboard to PDP-11 console)

;

boot du0:

;

; Control returns to the next line when the user presses Shift-Enter

; or the system halts on its own (e.g. SHUTUP.TSK)

;

quit

The “boot” command starts the PDP-11 operating system and directs keyboard input to the PDP-11 system
console. The user can press Shift-Enter at any time to pop up an E11 command prompt where additional commands
may be entered interactively. If there are unread lines remaining in “E11.INI” (i.e. following the “boot” command),
they will be read at that time. In this example, the program will exit immediately when Shift-Enter is pressed
because it causes the “quit” command to be read.

There are a few more basic options which are entered as switches on the E11 startup command line, rather than
being contained in the “E11.INI” initialization file:

/CONSIZE:WxH Set the default size for all CON: screens, including the one implicitly ASSIGNed to
TT0: at startup.

/HELP (syn. /?) Display a simple list of switches and their meanings, and exit without starting E11.

/INITFILE:file[.INI] Read the specified initialization command file instead of E11.INI.

/IOPAGE:nnnn Enlarge the I/O page past the usual 8 KB size, with nnnn specifying the decimal number
of kilobytes. This is mainly useful with customer-written loadable device emulation
modules which act like RAM windows, and is equivalent to the “Unibus fence” feature
of some PDP-11s that have 22-bit memory addressing.

/MEMORY:nnnn Set the maximum possible emulated memory size of the PDP-11 to nnnn (decimal)
kilobytes. By default this maximum is 4088 KB. If this amount is not available, E11
settles for whatever it can get (rounded down to a multiple of 8 KB) as long as it’s at
least 8 KB. This switch allows you to conserve memory when emulating a PDP-11 with
less memory than E11’s default.

/NOINITFILE Do not process the E11.INI initialization command file.

When configuring the system for the first time, it is best to exactly duplicate the system which is being replaced.
There may be a strong temptation to expand the system, now that PDP-11 peripherals are effectively “free” for
the asking. But such changes can cause conflicts with existing software, which may contain hard-coded device
names or other hidden assumptions about the system configuration. These problems may be avoidable, if system
expansion is postponed until after the existing system is brought up as-is.

Note that some operating systems do little or no autosizing and may have problems if the hardware being emulated
by E11 differs from the one for which the operating system was generated. In particular you may run into trouble

Installation and Configuration 15

if your OS depends on any static memory allocation (if E11 is emulating a different amount of memory than what
the system expects), or if it is built for Q22 I/O and E11 is emulating a PDP-11/44 with Unibus map registers, or
anything like that. Also, the routine in RSX-11M-PLUS that counts the number of registers in an RH70 depends on
PDP-11/70 autoincrement semantics, and will get the wrong answer if you set the CPU type to PDP-11/44. This
normally causes no problems, since real PDP-11/44s can’t have RH70s, but this and other “impossible” situations
can be easily created in E11.

One thing to watch out for, is that some software has hard-coded assumptions about how fast the hardware operates
in relation to the CPU. See section 1.11.1 for a discussion of interrupt timing. This can lead to strange behavior,
such as devices that simply hang, or supposedly I/O bound tasks that consume 100% of the CPU. These problems
can generally be solved by experimenting on the relevant emulated devices with the SET DELAY command. If the
system doesn’t operate correctly with the default delay counts, but springs to life when they’re increased to large
numbers, then it’s just a simple matter of tuning the numbers to get delays which are long enough that the system
works reliably, but still give good performance. Ideally the PDP-11 device drivers should be updated so that they
will operate correctly with “infinitely” fast hardware, since this will allow it to get the best possible performance
out of any fast PDP-11 replacement, but the SET DELAY command allows the user to work around these problems
without having to touch the PDP-11 software.

Chapter 3

Transferring the PDP-11
Operating System to the PC

In order to run an exact copy of a real PDP-11 system, the contents of the PDP-11’s disk(s) must be accessible
to Ersatz-11 to be used as emulated disks. In most cases, this means importing a byte-by-byte copy of each entire
disk into a large “image” file which is the same size as the entire PDP-11 disk. Note that this is very different from
importing the individual files from the PDP-11 disk. In some cases the files can be reassembled into a disk image,
but if possible it’s better to download the disk(s) as a single large image. The fewer transformations the data go
through, the fewer opportunities for mistakes that could lead to file damage.

Getting a snapshot of a bootable disk from an existing PDP-11 into a PC file can be tricky, there are many ways
to do it and which choice is the best one depends on what software and hardware are available, and what media
or protocols the PDP-11 and PC have in common. D Bit can help with some forms of media translation, call or
send email for information. DEC, Mentec, and S&H are all now willing to sell PDP-11 OS licenses to emulator
users, there doesn’t seem to be an issue about the lack of a CPU serial number. So ordering the latest OS version
is straightforward, and with the right peripherals the installation kits can be booted directly by E11 and installed
on emulated disk(s).

Disk images have been successfully loaded from real PDP-11s using Kermit, or Process Software TCP/IP, or
DECnet and Pathworks, or (as a last resort) an OS-supplied DUMP command on the PDP-11 with the output
captured with a PC terminal program and then massaged back into binary with a simple utility program. Also,
PUTR (available from ftp.dbit.com, see below) can build bootable RT-11 image files using a floppy disk distribution
kit, without the need for booting a real PDP-11.

3.1 SCSI disks

The easiest way of all to move any PDP-11 OS to the PC is using a SCSI disk drive. If you were already using
a PDP-11 SCSI controller, you should be able to move the disk directly over to a PC SCSI controller, and either
read it into an image file (using PUTR.COM) or use it directly (using the SCSI disk support in the full version
of E11). Iomega Zip and Jaz drives, and Fujitsu DynaMO 3.5” magneto-optical drives, are inexpensive and work
very well with both Ersatz-11 and PUTR.COM, and they provide a cheap, fast, easy way to transfer files or whole
disks between real PDP-11s and E11.

Even if the PDP-11 didn’t already have a SCSI controller, it might be worth obtaining a used one if a non-trivial

16

Transferring the PDP-11 Operating System to the PC 17

amount of data must be transferred, unless the PDP-11 operating system is too old to support SCSI MSCP devices.
Adding support for it to the operating system might require a SYSGEN in some cases, but for RSX, BRUSYS will
support a DU: controller regardless of whether your usual monitor is built with the DU: driver. Older versions of
RSTS can both backup and restore without ever booting a monitor at all, and the backups are self-booting and
include a copy of the backup utility, so restoring them on the target system is easy. New versions of RSTS require
that the backups be made under timesharing, but they can still be restored in INIT.SYS.

3.2 SCSI tapes

Magnetic tape can be a convenient way to import PDP-11 data to the PC, as long as a PC tape drive can be found
which will read the PDP-11 media. The DEC TZ30 and TK50Z-GA SCSI drives use TK50 tapes, and a variety of
companies still make SCSI 9-track tape drives. These may be mounted inside E11 as PDP-11 tape drives and used
directly by the emulated PDP-11, or images may be taken using D Bit’s DOS SCSI tape utility (available from
ftp://ftp.dbit.com/pub/ibmpc/util/st.exe) and the resulting .TAP files may be mounted under E11.

3.3 Kermit

Kermit is a protocol for transferring files over serial lines. It provides very good reliability, and requires no special
hardware, but it can be slow. At 9600 baud with the default Kermit protocol parameters (no long packets or sliding
windows), binary file transfers can take almost an hour per megabyte. This may be acceptable if the system has
small disks or the transfer can be performed over a weekend or during some other time when the PDP-11 is not
busy with other work. Kermit protocol support is included in most terminal programs, and Kermit software is
available at little or no cost for most computers and operating systems, including the following PDP-11 versions:

• KSERVE — D Bit’s server-only Kermit for RT-11, available from
http://www.dbit.com/pub/pdp11/rt11/kserve.mac

• K11 — Columbia’s official PDP-11 Kermit program, supports all major DEC/Mentec/S&H operating systems,
see http://www.columbia.edu/kermit/pdp11.html

• KRT — Billy Youdelman’s version of K11, enhanced for RT-11 and TSX-Plus, also at
http://www.columbia.edu/kermit/pdp11.html

It’s very important to issue SET FILE TYPE BINARY commands to the Kermit programs at both ends before
beginning a Kermit transfer of a PDP-11 disk. The other settable Kermit parameters are less critical, as they mainly
affect the speed with which the transfer will proceed. Of the above Kermits, only KSERVE is able to download an
entire raw disk. The others can download files but not entire raw disks. In some cases it may be possible to get
around this limitation by using PDP-11 system utilites (such as RT-11’s COPY/FILE/DEV command) to copy an
entire raw disk into a file on another, larger disk, and then use Kermit to download that file. Or, if no larger disk
is available, it may be possible to break the disk into several pieces (each small enough to fit into the free space on
another disk) and copy them to files one at a time, sending each to the PC via Kermit and then deleting it.

3.4 Ethernet

Ethernet can be a very effective way to transfer PDP-11 data to a PC. Unfortunately Ethernet hardware is not
nearly as common on PDP-11s as it is on PCs, but used Q-bus/Unibus Ethernet boards are available very cheaply

18 Transferring the PDP-11 Operating System to the PC

from used equipment dealers. So if the PDP-11 has software support for an Ethernet board, it may be worth buying
one just to transfer the disks.

The main problem with using Ethernet on PDP-11s is the availability of compatible protocols. If a PDP-11 operating
system supports Ethernet, it usually uses DECnet, while PCs are more likely to support TCP/IP. However, software
to support either protocol is available on both PCs and PDP-11s.

• Alan Baldwin’s excellent free TCP/IP packages for RT-11 and TSX-Plus are available via FTP from
shop-pdp.kent.edu.

• Megan Gentry’s “RTEFTP” RT-11 Ethernet file transfer program is available from
ftp://ftp.std.com/pub/mbg/pdp11/rt11/tools/rteftp/. It uses its own private protocol and can com-
municate only with other computers running RTEFTP, however it’s fast, very easy to set up, and can transfer
raw disks.

• Johnny Billquist’s BQTCP is a TCP/IP package for RSX, and is available as a disk image from
ftp://madame.update.uu.se/bqtcp.dsk (or .tap for a tape image).

• JSA Stackware, a commercial TCP/IP package for RSX, is available from JSA. It provides Telnet and FTP
access in both directions.

• Process Software’s TCP/IP package for the PDP-11 is also a commercial product, available from Process
Software (www.process.com).

• DECnet/DOS and Pathworks for DOS are no longer available, but they were able to connect to DECnet
hosts. So if you already have one of these packages, it may be useful for transferring disks.

Some of the above programs are not able to transfer entire raw disks over the Ethernet. In this case the same
workarounds as used with Kermit transfers may be applied, to copy raw disks to files and then transfer the files.

3.5 ASCII serial dump

Most DEC operating systems provide a utility (typically named DUMP or DMP) which can dump a file or device
out to the terminal in octal or hexadecimal. If this program is used to dump out the entire disk, a PC terminal
program can be used to capture the output, and it can be translated back to a binary disk image on the PC. This
should only be used as a last resort because there’s no error checking or correction, and the transfer is very slow
because of the inefficient encoding and extra header/trailer/address information that’s normally displayed with
each block.

If possible the transfer should be done using hexadecimal rather than octal, the transfer will go faster since each
word is displayed as only four characters instead of six. On an RSX system, this can be done with the following
commands:

>INS $DMP

>DMO ddu:/DEV/LOCK=V (if ddu: is the system disk)
>MOU ddu:/FOR (if ddu: is not the system disk)
>DMP TI:=ddu:/BL:0/WD

The file produced by capturing the output from the above command can be translated back into a binary disk image
using the “HEX2DSK” program, available from ftp://ftp.dbit.com/pub/ibmpc/util/. Source code is included

Transferring the PDP-11 Operating System to the PC 19

so the program can be modified for other dump display formats if needed. RT-11 has a DUMP/TERMINAL
command, which is similar to RSX’s DMP command but gives a different output format.

Since there is no error detection at all, disks transferred in this manner should be downloaded twice, and the
resulting files should be compared, as a test to make sure the dump wasn’t corrupted by line errors or buffer
overruns.

3.6 System-specific notes

RT-11 is the easiest operating system to transplant. For one thing, an RT-11 Kermit server is available (at
ftp://ftp.dbit.com/pub/pdp11/rt11/kserve.mac) which is able to download an entire raw disk image over a serial
line. This can take a long time but it just about guarantees that the configuration will be duplicated exactly, just
don’t forget to type SET FILE TYPE BINARY and REMOTE SET FILE TYPE BINARY to make sure both
participating Kermits agree not to try to treat the binary data as text. Failing that, you can use KSERVE, or any of
several other file transfer methods, to download the individual files (still in binary mode) into a PC directory. Then
use D Bit’s “PUTR” program (available at ftp://ftp.dbit.com/pub/putr/) to build a blank RT-11 disk image, copy
the files into it (be sure to use PUTR’s COPY/B command to copy in binary mode), and make the disk bootable
with PUTR’s BOOT command.

Note

The RT-11 DL: and DM: device handlers expect to find a bad block replacement table in block 1 of a
disk. If something else is there (like the pack label in Files-11 and RDS 1.1 and later, or the master
file directory in RDS 0.0), they will replace blocks at random and you’ll get a corrupted disk image. So
either modify your Kermit (etc.) to use the appropriate .SPFUN instead of .READ, or don’t use RT-11
programs to read non-RT-11 disks.

RSTS images can be assembled from individual files using Paul Koning’s freely available “flx” program, see below.
All you need to build a bootable pack are the files from SY:[0,1], flx knows how to do the HOOK operation and
make the pack bootable.

RSX is more difficult to move since currently there is no DOS software that knows how to build a bootable disk from
its component files. If you don’t have an easy way to take a raw snapshot of the whole disk (K11.TSK currently
can’t do it), the best bet is to dump the disk to tape and then restore the tape on the PC, assuming you have
suitable tape drives on both. Stand-alone BRU (a.k.a. BRUSYS) is the easiest way to do this. After copying the
entire disk to tape, build a bootable BRUSYS tape for E11 (HELP BRU STAND under RSX will tell you how).
Then use PUTR.COM to build a blank disk image file of the appropriate type, and boot E11 from the BRUSYS
tape, with the empty disk image file mounted. Once BRUSYS has started, you can physically switch tapes, or else
pop up an E11 prompt and MOUNT the (first) backup tape if you’re using tape image files. Then run FMT (if
needed) and BAD on the blank disk, and finally run BRU to restore the tape. If you want to use tape image files
instead of using a real tape drive (required on E11 Lite, since it doesn’t support SCSI tapes), you can use D Bit’s
DOS SCSI tape utility (available from ftp://ftp.dbit.com/pub/ibmpc/util/st.exe) to copy between real tapes and
E11 tape image files.

3.7 Utilities

PUTR.COM, a companion program to E11 is available from ftp://ftp.dbit.com/pub/putr/, and knows how to
read and write RT-11 and RSTS/E and DOS/BATCH volumes on a variety of media, as well as how to read RSX

20 Transferring the PDP-11 Operating System to the PC

volumes. It can write blank container files with the serial numbers and (empty) bad block data filled in correctly,
and format many types of DEC floppies, and SCSI disks too, which can be useful with any OS. It can also read and
write TU58 DECtape II tapes, if the drive is connected to a PC COM port. Assembly language source is included.

Paul Koning (former RSTS/E developer) has written a very complete program named “flx” for manipulating files
in RSTS disk images. Among other things it can build a bootable disk given the files from [0,1]. It’s available from
ftp://ftp.dbit.com/pub/flx/ and is written in portable C, so it can be used with any emulator (or with real
PDP-11 disk packs on a VAX). A DOS executable is included with the sources.

Chapter 4

Disk Devices

Ersatz-11 emulates a wide variety of disk drive and controller models. These are created using one MOUNT command
(see page 77) for each drive unit needed. Generally each emulated disk unit must be connected to an emulated disk
device (e.g. a large file on the PC’s disk) which is at least as large as the disk it emulates. The connection is device-
independent, so any emulated disk can be connected to any of the physical disk device types that E11 supports.
The controller itself is created implicitly when its first drive is mounted, and can be deleted by dismounting all of
its drives. The controller type (RL11, UDA50 etc.) is implied by the device name used in the MOUNT command, and
the same device name syntax is the same as most DEC operating systems. There can be more than one of each
type of controller. A third letter may be added to the device name when it is mounted, to specify the controller
to which it refers; A=first, B=second, etc. In most cases this letter is omitted and the first (or only) controller of
that type is used by default.

E11 has sensible defaults for all disk parameters, so in most cases a MOUNT command for each unit is all that is
needed. If necessary, the default drive parameters can be overridden using MOUNT switches, and the default controller
parameters can be overridden using a separate SET command, which may be given before or after the drives are
mounted. The defaults are as follows:

parameter default how to override

controller model based on SET CPU QBUS setting SET ddc: model (e.g. SET DUA: RQDX3)

controller
CSR/vector

DEC default addresses
“floating” addresses are calculated auto-
matically if appropriate

SET ddc: CSR=xxxxxx VECTOR=yyy

interrupt
priority

DEC default values, SET CPU QBUS set-
ting

SET ddc: PRIORITY=n

drive model based on size of container file MSCP/TMSCP drives:
/TYPE:type switch (e.g. /TYPE:RD54)
non-MSCP/TMSCP drives:
/type switch (e.g. /RK06)

write protection disabled /WP or /RO switch

A drive may be write-protected after it is mounted using a SET ddcu: READONLY command, and may later be
write-enabled again with SET ddcu: READWRITE.

21

22 PC disk devices

After a drive is mounted, a SHOW ddcu: command (e.g. SHOW DUA0:) will display the actual drive parameters for
that unit, as well as the controller parameters for the controller to which it is attached. The controller CSR, vector,
interrupt priority, and type (i.e. controller model) can be changed explicitly at any time with a SET command. If
these parameters are defaulted, their actual values can also be changed implicitly at any time, by a change in the
SET CPU setting (which can make a defaulted controller type switch between the Unibus and Q-bus models of that
controller), and by changes in the configuration of other devices that use “floating” CSRs and/or vectors (if this
controller is set to be a floating device, as DUB: and DYB: normally are for example).

4.1 Disk cache

Ersatz-11 provides a built-in disk cache, which can be enabled individually for each emulated disk unit by adding
a “/CACHE” or “/CACHE:n” switch to the MOUNT command that creates that unit. n is the amount of memory (in
bytes unless an optional suffix of KB, MB, or GB is added) to be set aside for the cache. This number includes all
variably-sized data structures, so the actual amount of data that can be held in the cache will be lower. The default
is 16 MB.

The built-in cache is intended mainly for the DOS version of E11, since the older DOS disk caches don’t always
scale well to the available RAM and hard disk capacity on modern PCs. On Linux and Windows systems the host
operating system already provides good disk caching, so there may be no advantage to using the built-in cache.
Some experimentation might be worthwhile though, since using E11’s cache in addition to the OS-supplied one
may reduce system call overhead enough to be noticeable.

The cache is currently write-through, i.e. it does not use delayed writes. Future versions may introduce write-back
caching, with a settable delay.

4.2 Padding short volumes

There are different schools of thought about what an emulator should do if a disk is being emulated using an image
file (or raw real drive) which is smaller than that disk, so it’s settable. One of these switches may be added to any
disk MOUNT command:

/NOPAD Don’t pad short images up to the size of the emulated disk. Any attempt to perform I/O beyond the
end of the image file (or raw device) will give an I/O error. This is the default.

/PAD:NULL Pad the image up to the emulated size with null space. Reads beyond the end of the physical disk
will return zeros, and writes are ignored.

/PAD:RAM EXPERIMENTAL FEATURE. Pad the image up to the emulated size with a partial RAM disk. This
may be useful for systems which use the latter part of a disk as swap space. This is an experimental
feature and may have bugs.

4.3 PC disk devices

The MOUNT command establishes a connection between an emulated PDP-11 disk drive unit, and a PC file or device
which will be used to hold the actual disk data. Generally this file or device must be at least as large as the
PDP-11 disk unit that is being emulated. E11 supports several different forms of physical media to be used for

Disk image files 23

emulating disks. The connections are made on a per-unit basis so it is possible to mix units attached to different
types of physical media within the same emulated PDP-11 disk controller. The supported types of physical media
are described below, along with the syntax of the MOUNT command for each type. The /RONLY (syn. /WPROTECT
switch may be specified on any MOUNT command, to lock the disk against writes.

4.3.1 Disk image files

Command syntax:

MOUNT ddcu: [d:path\]filename[.DSK] [switches]

Special switches: none

A disk image file contains a byte-by-byte image of a PDP-11 disk, presumably loaded from a real PDP-11 using
Kermit or DECnet or some equivalent, or built using PUTR.COM or FLX.EXE or RT11.EXE or a similar utility (see
chapter 3). The file is the same size as the total capacity of the PDP-11 disk drive it replaces. The file is located
using E11’s usual search rules, see section 1.9 for details.

There are two types of image files, “block” and “sector” images. “Block” images contain the disk data as it would
be read in sequential block order, which for most PDP-11 disks is the same as the raw device order. This is the
most common format and is normally used by default. “Sector” images apply to floppy disks only. RX01, RX02,
and RX50 disks are organized using a soft interleave layout to increase their speed when used with controllers
that have only one sector buffer. The PDP-11 device handlers (and/or controllers) for these disks handle the soft
interleave so it is normally invisible to the PDP-11 user program, so images made of these disks using something
like the RT-11 “COPY/FILE/DEV” command will be normal block images. When a block image file is accessed as a
virtual PDP-11 floppy disk, Ersatz-11 does the inverse of the soft interleave so that when the PDP-11 driver does
the interleave, the blocks come out in the correct order.

However if the image is taken using special software (such as the COPFLP.MAC program available from ftp.dbit-

.com), or on a non-DEC computer, it may be more natural for the image file to be in raw sector order, i.e. starting
with track 0 sector 1, then track 0 sector 2, track 0 sector 3 etc. In this case Ersatz-11 should not alter the
interleave, and in fact it should do the interleave itself if the file is mounted as something other than a virtual
floppy drive (since PDP-11 drivers for other devices don’t do the floppy-style interleave).

By default, Ersatz-11 guesses whether a file is a block or a sector image based on the file size:

size (bytes) type
256,256 RX01 sector image
512,512 RX02 sector image

1,025,024 “RX03” (DS RX02) sector image
(anything else) block image

Block images of RX01/02/03 disks are slightly smaller because the interleave scheme leaves out track 0, so they
can be distinguished by size alone, unless padding was added during transfer or something else altered the file size.
RX50 image files are the same size either way, since the RX50 soft interleave scheme uses all sectors of the disk. So
by default they are assumed to be block images. The defaults may be overridden with the “/BLOCK” and “/SECTOR”
switches on the MOUNT command.

Since DEC’s 8” floppy interleave scheme doesn’t use track 0, data from this track do not normally appear in a
block image file. However some non-standard software may need to use track 0, so the RX11, RX211, and RXT11
emulations relocate it beyond the end of the block image, if the file is enlarged by the size of one cylinder to be

24 Raw floppy disk drives

the same size as the equivalent sector image file. Use “/BLOCK” to specify that it’s still a block image, in spite of
being the size of a sector image. In this case it may be more natural to use a sector image, but E11 supports either
scheme.

type base size (bytes) extra size (bytes)
RX01 252,928 3,328
RX02 505,856 6,656
“RX03” 1,011,712 13,312

If the base file sizes are used, these files work as regular block images and track 0 does not exist. Any attempt to
write track 0 is a no op, and any attempt to read track 0 returns hex E5 in every data byte, as if the disk were
freshly formatted.

4.3.2 Multiple concatenated disk image files

Command syntax:

MOUNT ddcu: [d:path\]filename1[.DSK] + [d:path\]filename2[.DSK] + [d:path\]filename3[.DSK] + . . . [switches]

Special switches: none

If multiple filenames are specified, separated by plus signs (+), E11 treats them as a single disk whose size is the
sum of all the files put together. I/O done by the PDP-11 is broken up and goes to the correct file. The files
may be any size and located on any drive, and there’s no particular limit on the number of files that may be put
together (as long as the host operating system doesn’t run out of file handles and you can fit all the filenames
on one 132-column E11 command line). The purpose of this command is to allow using image files to emulate a
PDP-11 disk that’s bigger than the maximum file size supported by the file system. The files are located using
E11’s usual rules. See section 1.9 for details.

4.3.3 Raw floppy disk drives

Command syntax:

MOUNT ddcu: d: [switches]

Special switches: none

Floppy disk drives may be used to emulate any block-replaceable device supported by E11. “d:” is the drive letter,
i.e. A: or B: for the first or second floppy drive.

Note that confusion is possible if a floppy disk has a different total number of blocks than the device being emulated.
The PDP-11 OS may try to access areas off the end of the disk, which results in a controller-specific I/O error,
or may not use all of the disk. In particular writing a blank file system (with an OS-specific “initialize volume”
command) will result in a directory structure that doesn’t match the actual volume size. Care should be exercised
to avoid trouble. Like disk types are of course not a problem, so for example “MOUNT DX0: B: /RX01” will mount
a real RX01 disk to be used as an emulated RX01 disk. The HD: device works with any size device, so all floppy
types may be mounted on HD: if you have the “HD.SYS” device handler (under RT-11).

If the disk already has a correct directory structure to match its actual size, and is mounted to emulate a device
of at least that size, most operating systems (that use device-independent file system formats) will be able to read

RAM disk drives 25

and write the disk correctly. For example, if you initialize an RX23 floppy with RT-11 directory structure using the
PUTR utility under DOS, and then “MOUNT DL0: A: /RX23” in E11 (using the 1.44 MB RX23 disk to emulate a 5
MB RL01 pack), RT-11 will be able to access all files on the disk, and can write new files without data corruption.
Only the RT-11 INITIALIZE and SQUEEZE commands need to be avoided in this case.

4.3.4 RAM disk drives

Command syntax:

MOUNT ddcu: RAM: [switches]

Special switches: /LOAD:[d:path\]filename[.DSK], /SIZE:blocks

RAM disks may be created using regular PC memory. This gives extremely fast access to disk data, but has the
disadvantage that all data are lost on shutdown. So any needed files should be copied to permanent storage before
shutting down E11, and data may be permanently lost in the event of a power failure. The maximum possible
size of RAM disks depends on the amount of memory available, so the SHOW MEMORY command may be useful in
deciding how much space to allocate. Note that the actual amount of memory needed to create a RAM disk is
slightly more than the disk’s raw capacity, since E11 needs to maintain internal data structures related to the RAM
disk and the emulated PDP-11 controller to which it is attached.

If no MOUNT switches are given, a RAM disk is created that’s the same size as the drive being emulated, which is
itself defaulted. This size may be changed using the “/SIZE:n” switch, which sets the size of the disk to n blocks.
Other units besides blocks may be used by appending the unit to the number (with no space in between), for
example “/SIZE:20MB” sets the size to 20 megabytes. The RAM disk will initially contain all zeros unless it is
loaded from a disk file, which is done with the “/LOAD:[d:path\]filename[.DSK]” switch. The file is located using
E11’s usual rules, see section 1.9 for details. If this switch is given, the RAM disk will be the same size as the
file, unless the size is explicitly set with the “/SIZE” switch. The RAM disk is loaded from the file once when the
MOUNT command is issued, then the file is closed. Any data written to the RAM disk do not change the file from
which it was loaded. Note that if the RAM disk is not loaded from a file, it will normally need to be initialized by
the PDP-11 operating system after creation, in order to have a usable file system.

4.3.5 Disks with intentionally bad blocks

Command syntax:

MOUNT ddcu: BAD: [switches] pcdev . . .

Special switches: /LIST:[d:path\]filename[.TXT]

This layer may be inserted in front of any other disk emulation to add known bad blocks to a disk. This may be
useful for testing error support in PDP-11 utilities, or for preparing a disk image file which will later be transferred
to a real disk that has bad blocks. The /LIST switch gives the name of a text file which contains the list of block
numbers (separated by white space and/or newlines) for all the bad blocks. Any attempt to read or write those
blocks will return a device-dependent I/O error through the emulated disk controller.

26 Null disk drives

4.3.6 Null disk drives

Command syntax:

MOUNT ddcu: NULL: [switches]

Special switches: /SIZE:blocks

Null disks are useful only as placeholders. They appear to be the specified size (the default size matches the
emulated drive type), but reads return zeros and writes have no effect.

Emulated PDP-11 disk devices 27

4.4 Emulated PDP-11 disk devices

This section describes each PDP-11 disk drive type that Ersatz-11 emulates, and defines the device-specific MOUNT

command switches that apply to each emulated disk type.

name units controller drive/volume switches
DB: 0–7 RH11/RH70 /RP04, /RP05, /RP06, /SERIAL:nnnn, geometry switches
DC: 0–3 RC11 geometry switches
DD: 0–1 DL11 (none, always TU58 DECtape II)
DF: 0–7 RF11 geometry switches
(syn. RF:)
DK: 0–7 RK11D /RK02, /RK05 (syn. /RK03), geometry switches
(syn. RK:)
DL: 0–3 RL11 /RL01, /RL02, geometry switches
DM: 0–7 RK611 /RK06, /RK07, geometry switches
DP: 0–7 RP11C /RP02, /RP03, geometry switches
DR: 0–7 RH11/RH70 /RM02, /RM03, /RM05, /RM80, /RP07, /SERIAL:nnnn,

geometry switches
DS: 0–7 RH11/RH70 /RS03[L[A]], /RS04[L], geometry switches
DT: 0–7 TC11 (none, always TU55/TU56 DECtape)
DU: 0–65535 MSCP /TYPE:xxxyy
DX: 0–1 RX11 geometry switches
DY: 0–1 RX211 /RX01, /RX02, /SS, /DS, geometry switches
FX: 0 Fox 2/30 DBI geometry switches
HD: 0–15 virtual (none, file size is all that matters)
PD: 0–1 RXT11 geometry switches
QX: 0–3 Terak geometry switches

The “geometry switches” available on most models refer to /CYLINDERS:n, /HEADS:n, and /SECTORS:n, which
may be used to specify non-standard drive dimensions. This is for compatibility with some clone controllers,
which allowed extended (or shrunken) drive sizes and/or untranslated SMD drive geometry to be used instead of
the standard DEC geometry. In some cases the PDP-11 drivers may have been patched to use the non-standard
geometry. These switches allow duplicating that hardware configuration so that the patched drivers will run
unchanged under E11.

4.4.1 DB: — RP04, RP05, RP06

These are top-loading 12-platter pack drives. The RP04 (built by Sperry) and RP05 (Memorex) hold about 87
MB each, and the same media can interchange between them; the only reason for the different model numbers is
that they were built by different OEMs. The RP06 (Memorex 677) is a double-capacity version of the RP05, with
a capacity of about 174 MB. Up to eight drives can connect to an RH11 or RH70 Massbus channel. These drives
were extremely popular in the late 1970s and early 1980s, and were commonly emulated by aftermarket controllers
made by Emulex, SI, etc. E11 allows the /CYLINDERS:n, /HEADS:n, and /SECTORS:n switches when mounting these
drive types, to support cases where the PDP-11 drivers have been patched to support extended or untranslated
drive geometries using SMD drives on aftermarket controllers. Also, the /SERIAL:nnnn switch sets the drive serial
number.

28 Emulated PDP-11 disk devices

MOUNT DB: drive switches:
/CYLINDERS:n set non-standard number of cylinders
/HEADS:n set non-standard number of heads
/RP04 set drive type to RP04 (87 MB 12-platter pack drive)
/RP05 set drive type to RP05 (87 MB 12-platter pack drive)
/RP06 set drive type to RP06 (174 MB 12-platter pack drive)
/SECTORS:n set non-standard number of sectors
/SERIAL:nnnn set drive serial number (4 decimal digits)
/WPROTECT enable write protection (syn. /RONLY)

SET DB: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RH11 set controller type to RH11
RH70 set controller type to RH70
VECTOR=nnn set vector address to nnn octal

4.4.2 DC: — RC11/RS64

This is a very early drive with one to four fixed platters and fixed heads yielding high speed but very low capacity
(128 KB per platter). It’s useful mainly as a swap device, so using a RAMdisk to emulate it is a good choice.
There are few if any surviving units today, and no current PDP-11 operating system version is known to support it,
although earlier versions of RSTS did, as did DOS/BATCH. Since there is only one possible drive type, no switches
are required to select it.

MOUNT DC: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET DC: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.3 DD: — DL11/TU58

The TU58 is a small one- or two-transport cartridge tape drive. It is attached to the PDP-11 using a serial
port, and communicates using RSP (Radial Serial Protocol), or MRSP (Modified RSP) in later drives. It uses
cartridges which are physically similar to DC2000s, but hold only 256 KB each using DEC’s proprietary format.
DEC introduced the TU58 because they wanted to have a low-end storage peripheral which was cheap enough (well,
about $1800, cheap by DEC’s standards, and at least it didn’t require its own controller card) that they could
expect customers all to buy one. Then DEC would be able to get away with shipping diagnostics, microcode, and
small software updates on just one medium, instead of having to make everything available on all types of media
in use at the time. TU58s were plentiful, but deathly slow and low in capacity. DEC called the drives “DECtape
II” in the hope that the name would remind customers of the earlier 555/TU55/TU56 DECtape drives, which were
very popular.

TU58 drives are normally attached to a DL11/DLV11 serial line unit, and this is what DEC’s OS-supplied drivers
expect. However there’s no reason why a TU58 can’t be attached to any type of serial line, so E11 allows emulated

Emulated PDP-11 disk devices 29

TU58s to be mounted on any of its emulated serial ports. This means that creating a TU58 involves two or three
steps: an ASSIGN command to attach the DD: device to a serial line, and one or two MOUNT commands to attach
block devices to TU58 units 0 and/or 1.

For example:

ASSIGN TT1: DDA:

MOUNT DDA0: UNIT0.DSK

MOUNT DDA1: UNIT1.DSK

This would attach the first TU58 controller (DDA:) to a DL11 port (TT1: appears by default at the CSR and vector
addresses expected by DEC’s TU58 drivers), and then attach files to each of the two transports on that TU58. The
ASSIGN and MOUNT commands may be given in any order.

Note that the command to boot from this combination is BOOT TT1:, not BOOT DDA0:, since TT1: is the device
whose registers must be controlled to make the drive boot. The BOOT command supports drive 0 only.

MOUNT DD: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET DD: controller parameters:
NEW new firmware (MRSP with bidirectional flow control)
OLD old firmware (RSP, flow control from PDP-11 to TU58 only)

4.4.4 DF: — RF11/RS11, DDC DMS-11X/SSDM 100 (called RF: in RT-11)

The RS11 is another fixed-head disk, and is a PDP-11 version of the RS08 disk for the PDP-8. It was word-
addressable and more popular than the RS64, as it was larger (512 KB) and more reliable. Due to their high speed
for the time, RS11s were commonly used for swapping, so it may make sense to use a RAM disk to emulate an
RS11. E11 allows write protecting the entire unit (with the /WPROT or /RO switch), but it does not emulate the
RS11’s switch panel which allowed write-protecting the disk in individual 32 KB segments.

The Digital Development Corporation DMS-11X controller is an extended replacement for the RF11/RS11, which
uses a DDC “SSDM 100” RAM drive to hold up to 8 MB of data. It uses slightly different disk addressing from the
RF11, and uses the unit select bits as additional track address bits, so only DF0: is useful. Non-zero unit numbers
will not be accessible when emulating a DMS-11X controller. A full 8 MB RAM disk may be created as follows:

SET DF: DMS11X

MOUNT DF0: RAM: /SIZE:8MB

MOUNT DF: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET DF: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
DMS11X set controller type to DDC DMS-11X
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RF11 set controller type to RF11
VECTOR=nnn set vector address to nnn octal

30 Emulated PDP-11 disk devices

4.4.5 DK: — RK02, RK03, RK05 DECpack (called RK: in RT-11)

These front-loading cartridge drives were very popular in the 1970s thanks to their low cost and small size (a 10.5”
rack-mount box). The disks are similar to the IBM 2315, and many other minicomputer manufacturers used a
similar form factor. The RK02 is a rebadged Diablo model 30 (low density) drive, and holds 1.2 MB. The RK03
is a Diablo model 30 (high density) which holds 2.5 MB. The RK05 is a DEC-built media-compatible replacement
for the RK03 which also holds 2.5 MB. It changes the disk-select method to support a maximum of eight RK05
drives per controller instead of just four RK03s (but can be configured to use the old scheme for compatibility with
RK11C and RK8E controllers). DEC also built the RK05J, which is a later model of the regular RK05, and the
RK05F, which has a fixed platter with twice as many tracks and acts like two RK05 drives. All of these drives turn
at 1500 RPM.

E11 does not distinguish between the RK03 and RK05 because they have identical geometries. The RK02 is no
longer supported by current versions of PDP-11 operating systems. It is unusual in that it stores 256 bytes per
sector, vs. 512 for the RK03 and RK05. Be careful when using odd image file sizes with the DK: emulation — if
you intend a disk to be used as an RK05 but it’s not quite 4800 blocks long, E11 will auto-detect it as an RK02,
which probably isn’t what you want. Use an /RK05 switch to be sure.

MOUNT DK: drive switches:
/RK02 set drive type to RK02 (1.2 MB cartridge drive)
/RK03 set drive type to RK03 (2.5 MB cartridge drive)
/RK05 set drive type to RK05 (2.5 MB cartridge drive)
/WPROTECT enable write protection (syn. /RONLY)

SET DK: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.6 DL: — RL01, RL02

The RL01 and RL02 are top-loading cartridge drives which hold 5 and 10 MB, respectively. DEC marketed them
successfully as a replacement for the RK05, and they were extremely popular in the 1980s due to their reliability,
small size (a 10.5” rack-mount box) and the relatively low price of the drives (however the cartridges were expensive).
They turn at 2400 RPM, vs. 1500 RPM for the RK05. New RL01 and RL02 cartridges come with a bad block table
written by the manufacturer in the last track, which the PDP-11 operating systems are careful never to overwrite.
Some utilities check for this table and will complain if it is not present, so be sure to get the whole disk when
making image files. The PUTR utility (available from ftp.dbit.com) knows how to write a null bad block track
when creating an empty image file (using its FORMAT . . . /RL0x command).

Note that the RLV12 Q-bus controller adds support for 22-bit addressing using an extra register, which makes
it incompatible with DEC’s floating CSR rules for the second and later controller, since the rules pre-date the
RLV12’s introduction and expect an RL11 or RLV11 controller to fit in four words of space on the I/O page. This
can cause unexpected CSR conflicts on systems with a second RLV12 controller plus other floating devices. An
explicit SET DLB: CSR=. . . command may be needed.

MOUNT DL: drive switches:
/RL01 set drive type to RL01 (5 MB cartridge drive)
/RL02 set drive type to RL02 (10 MB cartridge drive)
/WPROTECT enable write protection (syn. /RONLY)

Emulated PDP-11 disk devices 31

SET DL: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
DEFAULT set controller type to default (RL11 for Unibus, RLV12 for Q-bus)
RL11 set controller type to RL11 (Unibus)
RLV11 set controller type to RLV11 (Q18)
RLV12 set controller type to RLV12 (Q22 with BAE register)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

4.4.7 DM: — RK06, RK07

The RK06 and RK07 are top-loading twin-platter cartridge drives with capacities of about 13 and 27 MB, respec-
tively. They were mounted on free-standing low-boy cabinets and were sort of a poor man’s Massbus drive. Even
the geometry and register layouts are similar to Massbus but there are only two platters (one timing surface, three
data surfaces), the disks turn at only 2400 RPM, and the control bus is serial rather than parallel. The drives
could be dual-ported but this configuration was rare.

MOUNT DM: drive switches:
/RK06 set drive type to RK06 (13 MB cartridge drive)
/RK07 set drive type to RK07 (27 MB cartridge drive)
/WPROTECT enable write protection (syn. /RONLY)

SET DM: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.8 DP: — RP02, RP03

These are top-loading 12-platter pack drives originally designed to be used with the PDP-10 series, but adapted
for the PDP-11. The RP02 holds 20 MB per pack, while the RP03 holds 40 MB. RT-11 can’t use a whole RP03 at
once due to the RT-11 file structure’s limit of 32 MB per volume, so it makes an RP03 look like two 20 MB disks.
Although these were fairly early drives and weren’t very widely used, the programming model is straightforward
and as a result, aftermarket controllers that emulate them using SMD drives are common. Some of these controllers
supported special drive geometries to give extended capacity and/or use the untranslated SMD sector addressing.
In order to emulate these configurations, E11 supports the /CYLINDERS:n, /HEADS:n, and /SECTORS:n switches so
that the user may specify custom disk dimensions.

MOUNT DP: drive switches:
/CYLINDERS:n set non-standard number of cylinders
/HEADS:n set non-standard number of heads
/RP02 set drive type to RP02 (20 MB 12-platter pack drive)
/RP03 set drive type to RP03 (40 MB 12-platter pack drive)
/SECTORS:n set non-standard number of sectors
/SERIAL:nnnn set drive serial number (4 decimal digits)
/WPROTECT enable write protection (syn. /RONLY)

32 Emulated PDP-11 disk devices

SET DP: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.9 DR: — RM02, RM03, RM05, RM80, RP07

The RMxx/RP07 series are late-model Massbus drives, and replace and upgrade the older RP04, RP05, and RP06
drives. Their capacities and programming model are slightly different from the earlier Massbus drives, so they
aren’t exact replacements.

The RM02 and RM03 are modified and rebadged CDC 9762 drives. Both hold 67 MB on a 5-platter pack, and media
can be interchanged between the two models, as well as with unmodified CDC 9762s using Emulex controllers. The
only major difference between the RM02 and RM03 is that the RM02’s spindle turns at 2400 RPM rather than
3600 RPM. This was done so that the RM02 would be slow enough to work with any PDP-11 model using the
RH11 Massbus adapter.

The RM03 (67 MB 5-platter pack drive), RM05 (256 MB 12-platter pack drive, actually a modified/rebadged CDC
9766), and RM80 (DEC’s own 124 MB Winchester disk using the same basic drive as the R80 and RA80) were
considered by DEC to be too fast for plain Unibus PDP-11s (really the problem was just the inadequate FIFOs
on the RH11 Massbus adapter). Similarly, the RP07 (516 MB Winchester disk manufactured by Sperry) was
supposed to be too fast for any PDP-11 to use at all, although some users managed to get them working anyway,
by reformatting them to use use greater than 1:1 interleave.

As with the DB: drives, E11 allows the /CYLINDERS:n, /HEADS:n, /SECTORS:n, and /SERIAL:nnnn switches to be
used when mounting DR: drives.

MOUNT DR: drive switches:
/CYLINDERS:n set non-standard number of cylinders
/HEADS:n set non-standard number of heads
/RM02 set drive type to RM02 (67 MB 5-platter pack drive)
/RM03 set drive type to RM03 (67 MB 5-platter pack drive)
/RM05 set drive type to RM05 (256 MB 12-platter pack drive)
/RM80 set drive type to RM80 (124 MB Winchester drive)
/RP07 set drive type to RP07 (516 MB Winchester drive)
/SECTORS:n set non-standard number of sectors
/SERIAL:nnnn set drive serial number (4 decimal digits)
/WPROTECT enable write protection (syn. /RONLY)

SET DR: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RH11 set controller type to RH11
RH70 set controller type to RH70
VECTOR=nnn set vector address to nnn octal

Emulated PDP-11 disk devices 33

4.4.10 DS: — RS03, RS04

The RS03 and RS04 are fixed-head Massbus disks that hold 512 KB and 1024 KB, respectively. As with the RS11,
these were used for swapping and other cases where speed is critical, so mounting them as RAM disks would work
well.

MOUNT DS: drive switches:
/RS03 set drive type to RS03 (512 KB fixed-head disk)
/RS03L set drive type to RS03L (512 KB fixed-head disk with interleave)
/RS03LA set drive type to RS03LA (512 KB fixed-head disk with interleave)
/RS04 set drive type to RS04 (1024 KB fixed-head disk)
/RS04L set drive type to RS04L (1024 KB fixed-head disk with interleave)
/WPROTECT enable write protection (syn. /RONLY)

SET DS: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RH11 set controller type to RH11
RH70 set controller type to RH70
VECTOR=nnn set vector address to nnn octal

4.4.11 DT: — TU55, TU56 DECtape

Although it’s actually 3/4” magnetic tape, DECtape is block-replaceable and uses a fixed number of fixed-size
blocks, so really it behaves more like disks do than tapes. It puts 578 512-byte blocks on a 260’ tape, and was very
popular for off-line storage in the early 1970s when hard disk space was expensive and floppy disks were not yet
widely available. The TU55 is a single-transport drive, while the TU56 has two independent transports, so it takes
two MOUNT DTn: commands to define a TU56. That difference is invisible to the PDP-11 so there’s no switch to
tell them apart.

MOUNT DT: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET DT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.12 DU: — MSCP disks

MSCP (the Mass Storage Control Protocol) is a flexible, device-independent protocol which allows any disk device
(up to 2 TB) to connect to any of DEC’s later computers. It was used in all of DEC’s PDP-11 disk controllers from
the mid-1980s on. DEC imposed an artificial limit of four drives per controller, upon which some versions of some
PDP-11 operating systems depend. Also, DEC wants unit numbers to be unique within a system (i.e. if there’s
a unit 0 on one controller there should be no unit 0 on any other controller), and the maximum allowable unit
number varies from one device type to another, depending on the method used to assign a unit number to a drive
(unit select cap for the “ready” light, DIP switches, etc.). Unlike many of DEC’s own drives, E11 implements the
full 16-bit unit numbers specified by MSCP, so the amount of available memory is the only limit on unit numbers

34 Emulated PDP-11 disk devices

or the number of drives per controller. Even so, care should be taken to observe the limitations that the PDP-11
operating system imposes on MSCP configuration.

MSCP provides a way for the PDP-11 to find out the model name of each drive, which can be one to three letters
followed by two decimal digits. This is largely a cosmetic feature, since MSCP already has ways for the PDP-11 to
find out a disk’s size and whether it’s fixed or removable, so most of the time the name is meaningless. But all the
same, the drive type can be set to any appropriate string using the “/TYPE:name” switch on the MOUNT command.
The default drive type string is “RA81” for image files, or the actual drive type (“RX50” etc.) for SCSI disks and
floppies.

In some cases the drive type is important, for example some of the programs that format floppy disks on RQDX3
and RQZX1 controllers will refuse to go ahead unless they believe that the drive is an RX33, so you should use
“/TYPE:RX33” when mounting a floppy drive or SCSI drive which is to be formatted using standard software.

MSCP requires that each volume (except for floppy disks) contain a relocation control table (RCT) at the end of
the disk, with a minimum length of one block. This table is used for remapping bad blocks and making the volume
appear to be error-free. Since all current PC disk media (except floppy disks) provide some form of invisible bad
block remapping of their own, they are already error-free, so there is no real need for this feature. Some aftermarket
SCSI controllers provided a one-block RCT anyway, by deducting one block from the reported size of the volume.
E11 can be set to do the same thing using the /RCT switch. This is the default for SCSI disks, but it can be
overridden using the /NORCT switch.

MOUNT DU: drive switches:
/NORCT don’t deduct one block for relocation control table
/RCT deduct one block for relocation control table
/TYPE:xxxyy set drive type to xxxyy (1–3 letters, 2 digits)
/WPROTECT enable write protection (syn. /RONLY)

SET DU: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DEFAULT set controller type to default (UDA50A for Unibus, RQDX3 for Q-bus)
KDA50 set controller type to KDA50
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RQDX2 set controller type to RQDX2
RQDX3 set controller type to RQDX3
RQZX1 set controller type to RQZX1
RUX50 set controller type to RUX50
UDA50 set controller type to UDA50
UDA50A set controller type to UDA50A

4.4.13 DX: — RX01

The RX01 is a single sided, single density floppy disk drive which uses 8” disks with the standard IBM 3740 format,
the same as was commonly used in CP/M systems. The RX01 is a dual-drive system. If only one of the two units
is MOUNTed, the other one will still appear to be there, since the RX11/RXV11 controller has no way of reporting
whether a drive is present or not, but any attempts to do I/O to the missing drive will return error status.

E11 can read and write actual RX01 floppy disks, using an 8” drive attached to a PC floppy controller (with an
adapter such as D Bit’s FDADAP board) which supports single density.

Emulated PDP-11 disk devices 35

MOUNT DX: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET DX: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

4.4.14 DY: — RX02, “RX03”

The RX02 is a double-density follow-on product to the RX01. It holds twice as much data per disk, and also uses
DMA instead of programmed I/O to copy between PDP-11 memory and the on-board sector buffer, so there’s less
CPU overhead. DEC apparently planned a double-sided upgrade, which became commonly know as the “RX03”
but was never actually released. However, there are connectors for the extra heads on the drive’s controller board
(most of the “brains” of the RX01 and RX02 systems are actually in the drive), and DEC even documented the
register fields that have to do with using double-sided disks, and the RT-11 V4.0 DY.MAC driver includes support
(disabled under conditionals and with a bug at label DOXFER where R3 hasn’t been loaded yet) for double-sided
disks, but it was removed in later versions.

E11 includes the double-sided support in its emulation. The /SS and /DS switches can be used when mounting
the drive to set the number of sides, and SET DYu: SS (or DS) can be issued at any time to change it. This may
be necessary when swapping disks in a real floppy drive, because unlike 8” drives, 5.25” drives have no way of
distinguishing single- from double-sided disks, so it can’t be done automatically.

RSTS/E uses the names DX: and DY: interchangeably to refer to an 8” floppy drive, which may be either an RX01
or RX02. This may mean that the device name needed to emulate an existing drive under E11 is different from
the name that had been used to refer to the same drive under RSTS/E.

MOUNT DY: drive switches:
/DS double-sided disk
/RX01 single-density disk
/RX02 double-density disk
/SS single-sided disk
/WPROTECT enable write protection (syn. /RONLY)

SET DY: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DS1 disk in drive is double-sided
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
SS1 disk in drive is single-sided
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

1Really a drive option — unit must be mounted before this option is set

36 Emulated PDP-11 disk devices

4.4.15 FX: — Fox 2/30 “drum”

The Foxboro Company’s Fox 2/30 process control system was based on a PDP-11/15 CPU but used a Foxboro-
specific “data bus interface” (DBI) to connect Foxboro’s own hardware to the CPU over a private bus. One of
these devices was a Digital Development Corporation 6200 or 7311 fixed-head disk (or SSDM 100 RAM disk) which
the Foxboro documentation calls a “drum”, probably because some of the control electronics are inside the disk
shroud, which leads it to be much taller than is usual for a disk. The disk was available in several configurations,
with a varying number of tracks (64, 96, 128, 144, and 256 are known possibilities), each containing 242 sectors of
32 bytes each. There’s only one disk so it must be FX0:, and the size of the image file decides how many tracks
exist. The FX1: device is used to emulate the Foxboro paper tape reader.

The SET CSR value for the FX: device is the base address of the DBI, normally 164000. E11 emulates the registers
for FX0: or FX1: or both (depending on whether they’ve been MOUNTed), but doesn’t get in the way of other
DBI registers in case the real DBI is connected to E11 through a Unibus adapter. The register at 164000 contains
status bits for each of the devices plugged into the DBI. E11 emulates this register as needed, and if a Unibus
adapter is present, it combines the emulated status bits with the ones from the real DBI.

MOUNT FX: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET FX: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR7 for Unibus, BIRQ7 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.16 HD: — Hypothetical disk

This is a hypothetical disk device which exists only in Ersatz-11. Its original definition was based on reverse-
engineering the HD SYS.EXE device emulation that came with the so-called “Russian” LSI-11/2 emulator which
used to be floating around the Internet, so that E11 would be able to boot disk images intended for that emulator.
However that emulation was not very useful, since it (apparently) had no provision for interrupts or memory beyond
64 KB or drives bigger than 32 MB. The current emulation has been extended to support 22-bit addressing, up to
16 drives of up to 2 TB each, and it uses interrupts to signal completion so the system doesn’t have to stall during
I/O. The main reason it’s interesting is that it supports variably sized devices like MSCP does, but with a much
simpler programming model so that PDP-11 drivers can be written which require far less memory than MSCP
drivers. An RT-11 driver (HD.MAC) is included with E11, and one for Fuzzball is available from ftp.dbit.com.

MOUNT HD: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET HD: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

Emulated PDP-11 disk devices 37

4.4.17 PD: — PDT-11/150 RX01

The RXT11 single-density 8” floppy controller in the PDT-11/150 microcomputer (see Appendix D) is just different
enough from the RXV11 to be incompatible with regular RX01 software, so E11 provides it as a separate emulated
controller type.

MOUNT PD: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET PD: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

4.4.18 QX: — Terak 8510/a single-density disk

The Terak 8510/a’s single-density 8” floppy controller uses media compatible with the DEC RX01, but has a
different programming model. Multi-controller boot blocks detect the controller type by looking for a boot PROM,
so there must be a ROM image at location 173002 containing something other than 000340 for booting to work.

MOUNT QX: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET QX: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

Chapter 5

Tape Devices

The full range of standard PDP-11 magtape drives and controllers can be emulated under Ersatz-11. Tape drives
are configured in the same way as disks, with a MOUNT command to set up each emulated tape unit. The defaults for
controller and drive parameters also work the same way as disks, with the controller model based on the emulated
CPU type and the CSR and vector computed according to “floating” address rules if necessary. However the default
tape drive models are essentially chosen arbitrarily, since unlike disks, there’s no point in trying to guess the drive
model based on the size of the PC file or device that’s being used to emulate a tape drive, because the amount of
data on a tape is variable anyway. In any case, the default drive and controller parameters can be overridden with
MOUNT switches and SET commands, the same way they can with disks. The /RONLY (syn. /WPROTECT switch may
be specified on any MOUNT command, to lock the tape against writes.

A drive may be write-protected after it is mounted using a SET ddcu: READONLY command, and may later be
write-enabled again with SET ddcu: READWRITE.

5.1 PC tape devices

As with disks, E11 uses a device-independent interface to connect any emulated tape drive to any real tape device.
This connection is made with a MOUNT command, and the current configuration of an emulated tape can be displayed
with a SHOW command.

5.1.1 Tape image files

Command syntax:

MOUNT ddcu: [d:path\]filename[.TAP] [switches]

Special switches: /LENGTH:n, /MAXRECORD:n, /SIZELIMIT:nMB

A tape image file contains a byte-by-byte image of tape data, with headers and trailers on each record to maintain
the blocking data from the real tape. Each record looks like this:

.LONG LEN ;32-bit record length, LSB first, byte-aligned

38

RAM tape drives 39

.BLKB LEN ;LEN bytes of data

.LONG LEN ;the length again, for backspacing

A tape mark appears as a single 32-bit 0. The MOUNT command for an image file may include a /MAXRECORD:n
switch, which sets the maximum possible record length that can be read or written on that unit. The default is
65536 bytes. E11’s memory usage may be decreased slightly by using a smaller number (this matters much less
nowadays, but is left over from when E11 was a 16-bit program), but data will be lost if the PDP-11 attempts to
read or write records larger than the specified maximum. Both ANSI and DOS-11 labeled tapes normally have a
maximum record length of 512 bytes, but BRU tapes and UNIX “tar” tapes use longer records.

By default, tapes have unlimited length, but in some cases (such as diagnostics which intentionally fill a tape with
test data) it may be useful to simulate the EOT marker, which gives an early warning before the actual end of the
tape is reached. This may be done with the /LENGTH:n switch, which gives the length of the tape in feet (the file
size is computed using the emulated density), or with the /SIZELIMIT:xMB switch, which gives the actual file size
limit in megabytes (etc.).

As with disks, there are also /RONLY (syn. /WPROTECT), and /RW switches, to optionally write-lock a tape drive.
The file is located using E11’s usual rules. See section 1.9 for details. If the file does not exist, it is created as a
zero-length file in the current working directory.

5.1.2 RAM tape drives

Command syntax:

MOUNT ddcu: RAM: [switches]

Special switches: /LOAD:[d:path\]filename[.TAP], /SIZE:blocks

RAM tapes may be created using regular PC memory, just like RAM disks. Use SHOW MEMORY to see how much
memory is available, E11 uses 1 MB (1,048,576 bytes) by default but a different number of blocks may be specified
using the “/SIZE:n” switch. Other units besides blocks may be used by appending the unit to the number (with
no space in between), for example “/SIZE:100MB” sets the size to 100 megabytes. As with RAM disks, the actual
amount of memory needed to create a RAM tape is slightly more than the tape’s raw capacity, due to overhead
for internal data structures. The memory allocated is shared between tape data and record length information, so
data stored in many short records will require more memory than the same amount of data stored in a few larger
records.

The RAM tape will initially be empty unless it is loaded from a tape image file, which is done with the
“/LOAD:[d:path\]filename[.TAP]” switch. The file is located using E11’s usual rules, see section 1.9 for details.
If this switch is given, the RAM tape will be the same size as the file, unless the size is explicitly set with the
“/SIZE” switch. The RAM tape is loaded from the file once when the MOUNT command is issued, then the file
is closed. Any data written to the RAM tape do not change the file from which it was loaded.

5.1.3 Null tape drives

Command syntax:

MOUNT ddcu: NULL: [switches]

Special switches: none

40 Emulated PDP-11 tape devices

Null tapes are useful only as placeholders. Writes have no effect, and reads return tape marks.

5.2 Emulated PDP-11 tape devices

This section describes the emulated PDP-11 tape drive models, and defines the device-specific MOUNT command
switches that apply to each.

name units controller drive/volume switches
CT: 0–1 TA11 (none, always TU60 DECassette)
MM: 0–7 RH11/RH70, TM03 /TE16, /TU45, /TU77, /SERIAL:nnnn
MR: 0–3 TR79F (none, always TR79/HP7970E)
MS: 0–7 TS11 etc. (none, always matches controller)
MT: 0–7 TM11 (none, software can’t tell)
MU: 0–65535 TMSCP /TYPE:xxxyy

5.2.1 CT: — TU60 DECcassette

The TU60 was designed to provide cheap off-line storage using ordinary audio cassette tapes. The TU60 is a 51/4”
box containing two tape transports and most of the control electronics, connected by a ribbon cable to the TA11
controller, which is an M7892 quad SPC containing a dumb interface.

Under the CAPS-11 cassette programming system, the TA11/TU60 could be used as the system’s only mass storage
device. It uses programmed I/O rather than DMA, so tape data bytes are transferred one at a time. Unlike other
tape devices, the TU60 requires the PDP-11 to know the record length ahead of time when reading a record, and
gives an error if the PDP-11 attempts to read more or less than the correct number of bytes. The “LOG CTn:”
command may be used to find out whether a PDP-11 program is trying to read the wrong record size.

The TA11/TU60 cassette tape system requires a mandatory load point gap (i.e. tape mark) on all tapes. E11
simulates this internally so that the load point gap does not appear on the physical medium. This allows the
emulated TU60 general access to tapes that may have been created using some other device (or emulated device),
where an extra tape mark at BOT would violate the labeling standards.

MOUNT CT: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET CT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

5.2.2 MM: — TE16/TU16, TU45, TU77

These tapes all use the TM02 or TM03 Massbus tape formatter to control up to eight slaves. The formatter
itself uses one of the eight possible Massbus unit numbers (typically 0), and the resulting two-level unit selection
scheme slightly complicates the device naming, since it appears nowhere else. As a result, the most common naming
convention for “MMn:” device names uses the unit number n to refer to the slave number within the single formatter,

Emulated PDP-11 tape devices 41

rather than the Massbus unit number (which is what is referred to by the unit number with all Massbus disks),
and the formatter is Massbus unit 0.

E11 uses an extended MM: device name syntax similar to that used by RSX, where each slave’s device name looks
like “MMcu s:”. c is a letter indicating which RH11/RH70 controller connects to the TM03 formatter. The default
in this version of E11 is “C”, the letter may change in future versions but in any case it refers to the default tape
Massbus adapter at (17)772040. u is the Massbus unit number of the formatter, which defaults to 0 and is in the
range 0–7. s is the slave number (within a TM03 formatter) of the tape transport, which also defaults to 0 and is in
the range 0–7. If a number is present but no “ ”, that number is the slave number, not the Massbus unit number.

The effect is that if the controller letter and Massbus unit number are omitted leaving a device name like “MM3:”,
this name has the same meaning as the usual RT-11 or RSTS name, which is: default tape RH11 (the one at
(17)772040), default formatter (0), slave 3. Meanwhile additional fields may be supplied to identify any of the
64 possible slaves on any of the (currently 3) possible Massbusses, so “MMA2 5:” refers to the first RH11, TM03
formatter 2, slave 5. This same name format may also be used in any other E11 command (e.g. BOOT, LOG) that
takes a device name.

The MOUNT MM: command has switches to identify the drive model, but their only effect is to set the value of the
“drive type” register. From a PDP-11 software point of view, all drives attached to a TM03 formatter look the
same, the only difference is speed. There is also a /SERIAL:nnnn switch, which sets the value of the “drive serial
number” register.

MOUNT MM: drive switches:
/SERIAL:nnnn set drive serial number (4 decimal digits)
/TE16 set drive type to TE16 (45 IPS NRZI/PE)
/TU45 set drive type to TU45 (75 IPS NRZI/PE)
/TU77 set drive type to TU77 (125 IPS NRZI/PE)
/WPROTECT enable write protection (syn. /RONLY)

SET MM: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
RH11 set controller type to RH11
RH70 set controller type to RH70
VECTOR=nnn set vector address to nnn octal

5.2.3 MR: — TR79 (HP7970E)

The TR79F is a justifiably rare tape controller for TR79 (HP7970E) 1600 BPI tension-arm tape drives. It’s unusual
in that the parity track appears in memory, so each tape frame (8 data bits + parity) is stored in a 16-bit word,
with the high seven bits unused. The only known software that supports it is the TRDP version of the XXDP
monitor, and the ZTRAB0.BIC diagnostic (which depends on the UNITS=1 setting, below).

MOUNT MR: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

42 Emulated PDP-11 tape devices

SET MR: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
UNITS=1 one drive responds to all addresses (default)
UNITS=4 up to four drives on one controller
VECTOR=nnn set vector address to nnn octal

5.2.4 MS: — TK25, TS04, TS05, TU80

These drives are microcomputer-controlled and have a programming model which is like a simplified version of
TMSCP. There are no drive type switches because each controller model supports only one drive type anyway, so
the drive type can be controlled implicitly by changing the controller type with a SET command. The TK25 is a
cartridge tape, while the others are 9-track magtapes, but they all look similar from the PDP-11 operating system’s
point of view.

DEC’s earlier controllers support only one drive per controller so PDP-11 operating systems normally use the unit
number to distinguish between separate controllers. Like later controllers, E11 allows up to 8 units per controller, so
E11 uses the controller letter to distinguish between multiple controllers, the same as with most other device types.
This means that when emulating a typical DEC system with one unit per controller, drives that the operating
system calls MS0:, MS1:, and MS2:, will be called MSA0:, MSB0:, and MSC0: by E11, since they’re the first and
only slaves on three separate controllers. This issue arises only when there is more than one MS: style tape drive,
which is rare.

MOUNT MS: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET MS: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
DEFAULT set controller type to default (TU80 for Unibus, TSV05 for Q-bus)
EXTFEAT enable extended features
NOEXTFEAT disable extended features
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
TQK25 set controller type to TQK25 (Q22 TK25 controller)
TS11 set controller type to TS11 (Unibus TS04 controller)
TSU05 set controller type to TSU05 (Unibus TS05 controller)
TSV05 set controller type to TSV05 (Q22 TS05 controller)
TU80 set controller type to TU80 (Unibus TU80 controller, M7454 module)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

5.2.5 MT: — TS03, TU10

The TU10 is a vacuum column tape drive which interfaces to the PDP-11 through a classic Unibus interface, made
up of a number of flip chip modules on a wire wrap backplane. The TS03 (actually a rebadged Kennedy 9700) is a
very small tension-arm drive which uses up just 10.5” of height in a rack, and uses a physically smaller controller
made with higher density modules. However they both look the same to software, so there are no drive type
switches to distinguish them. The 7-track version of the TU10 is not supported.

Emulated PDP-11 tape devices 43

MOUNT MT: drive switches:
/WPROTECT enable write protection (syn. /RONLY)

SET MT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

5.2.6 MU: — TMSCP tapes

TMSCP (the Tape Mass Storage Control Protocol) is a device-independent protocol for connecting arbitrary tape
drives to any of DEC’s later computers. It doesn’t particularly reduce the amount of implementation-specific quirks
that must be dealt with (tapes never had anywhere near the amount of device-specific details as disks do to begin
with), but it provides symmetry with the MSCP protocol for disks, and some systems are able to capitalize on
this by sharing code between the disk and tape drivers. DEC generally didn’t have more than one tape drive per
TMSCP controller, but as with MSCP disks, E11 has no such artificial limits. However this means it may be
possible to configure a system which is incompatible with the PDP-11 operating system’s TMSCP driver, so it is
best to define a separate controller for each drive anyway.

As with MSCP disks, the /TYPE:xxxyy switch sets the unit type name, which may be up to three letters and up to
two decimal digits. The default is TU81 for image files and RAM tapes, or the actual drive type for SCSI tapes.

MOUNT MU: drive switches:
/TYPE:xxxyy set drive type to xxxyy (1–3 letters, 2 digits)
/WPROTECT enable write protection (syn. /RONLY)

SET MU: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DEFAULT set controller type to default (KLESI for Unibus, TQK50 for Q-bus)
KLESI set controller type to KLESI (Unibus TU81 controller)
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
TQK50 set controller type to TQK50 (Q22 TK50 controller)
TQK70 set controller type to TQK70 (Q22 TK70 controller)
TUK50 set controller type to TUK50 (Unibus TK50 controller)

Chapter 6

Serial Lines

E11 has flexible support for serial and line printer devices. As with disks and tapes, any supported PC serial device
may be used to emulate any emulated PDP-11 character device, and once again E11 chooses sensible defaults for
the controller types and CSR/vector addresses based on the emulated CPU type and the configuration of “floating”
devices, so in many cases no SET commands will be needed.

Each serial line is created with an ASSIGN command. TT0:, the system console, is connected to CON1: (the first
emulated VT100 session, displayed on the PC video display) when E11 starts up, but it can be reassigned to any
other screen or serial port with an ASSIGN TT0: command. If it is assigned to an RS232 serial port, the E11 prompt
can no longer be popped up using Shift-Enter, because this key combination does not correspond to any ASCII
character that could be sent over a serial line. So by default, a BREAK condition on the console serial port will
bring up the “E11>” prompt. If this is inconvenient, the SET BREAK command can be used to define one ASCII
character which will cause the prompt to pop up. For example, putting a SET BREAK 20 command in the E11.INI
initialization file will make the prompt pop up whenever CTRL/P is typed on the console terminal.

Output to any serial or printer device can be captured to a PC file using E11’s LOG command. For example, LOG
TT0: FOO will cause all data displayed on the console terminal to be saved in FOO.LOG, until logging is turned
off with a LOG TT0: command (with no filename).

An ASSIGN command will fail if the specified PC port doesn’t exist, or if the new ASSIGN command would steal
TT0:’s device for some other port. There must always be something attached to TT0: since that’s E11’s console
terminal.

Note that Ersatz-11 does not flag an error if the ASSIGN command assigns a TT: port to a printer, or assigns an LP:

port to a screen, even though these are usually not likely to be useful combinations. The reason both port types
use the same pool of devices is so that they can both access COM ports, since serial terminals and serial printers
are both reasonable devices. LP: ports attached to serial ports or video screens respond to XON/XOFF flow control.
One good reason to ASSIGN an LP: port to a VT100 session is that a LOG command will capture the output to a

44

PC serial devices 45

file, and there’s no need to actually pop up that session and see it on the screen.

6.1 PC serial devices

name units type switches
CONu: 1–12 video console /SIZE:WxH
OSPRINT: none dumb line printers via OS-supplied print drivers
ASYNCn: 0–n shorthand for available real serial ports
PRINTn: 0–n shorthand for available real printer ports
SYNCn: 0–n shorthand for available real sync ports
NULL: none host-OS-independent null device /LOOPBACK

6.1.1 Serial options common to all devices

E11 has a set of “serial options” which are common to all serial device types, and are used to set communications
parameters. These options may be used as either a switch (with a preceding “/” character) on the ASSIGN command
when the port is created, or as a separate SET command any time thereafter. For example:

ASSIGN TT1: COM2: /MODE:1200,N,8,1

SET TT1: MODE=2400,E,7,1

(These commands are just examples and do not work on the OS/2 version of Ersatz-11, since it has no support for
COM ports.) The first command will create TT1: and attach it to COM2. The line parameters are set to 1200
baud, no parity, 8 data bits, and one stop bit. The second command will change the existing TT1: port to use 2400
baud, even parity, 7 data bits, and one stop bit. The option name may be separated from its parameters by either
a “:” or “=” character.

Note that some emulated port types allow the communications parameters to be set by the PDP-11 operating
system. E11 allows this by default, but in some cases the user may want to override the PDP-11’s parameters, for
example to set a port to a higher baud rate than the PDP-11 equivalent supports. In this case the /LOCK switch
will be useful when creating the port (usually in combination with a /MODE switch). The SET ddcu: LOCK and SET

ddcu: UNLOCK commands can be used to lock and unlock the port’s communications parameters after the port has
already been created.

The sections that follow describe each physical PC serial (or serial-like) device that E11 supports, along with the
command syntax needed to use them as emulated PDP-11 serial ports. As with disk and tape units, the ports are
created on a line-by-line basis so there is no need to use the same kind of physical port for all emulated ports of a
given type. Also, serial multiplexers can be sparsely populated. Only one port needs to be created for the whole
emulated multiplexer to exist. Missing ports will simply throw transmitted data away and will never receive any
input.

6.1.2 Video consoles

Command syntax:

SET CONn: SIZE=WxH (if needed)
SET CONn: termtype (if needed)
ASSIGN ddcu: CONn: [switches]

46 Line printer emulation using OS-supplied print drivers

Special switches: /NODOUBLE, /NOREPLY, /SIZE:WxH

The specified PDP-11 terminal port is connected to one of twelve simulated VT100s, that can normally be put up
on the screen by pressing Alt and the function key corresponding to the screen number (F1–F12).

The default terminal type is a VT100 with the advanced video option (AVO) installed. Available terminal types
are VT100 (the default), VT100 NOAVO (a VT100 with no AVO), VT101 (like VT100 NOAVO but with slightly different
autowrap behavior), and VT102 (like VT100 but with a third style of autowrap behavior, as well as a few new
commands, mainly for inserting/deleting characters and lines).

Note that the screens assigned to F11 and F12 are not accessible on the old 84-key AT keyboard, unless other
keys are redefined to reach them. When one screen is being displayed on the PC screen, the others (up to 11) are
maintained invisibly in memory, so they will be up to date whenever another Alt/Fn keypress switches the screen
to display one of the hidden sessions. This is only the default behavior of the function keys. If they are redefined
using DEFINE KEYPRESS commands then other keys will need to be defined to switch displays, using the “PRIMARY
n” and “SECONDARY n” keyscript commands.

/NODOUBLE disables the display of double-wide or double-high characters. On an EGA/VGA/SVGA in text mode,
E11 will allocate pairs of unused character-generator cells for defining double-size versions of regular characters, but
there aren’t enough unused cells for every possible character so this works well only when only a small number of
double-sized characters are displayed (or actually, when there aren’t too many different characters on the screen at
once, which is usually not a problem with login banners etc.). When the available cells are exhausted, regular-sized
characters are used, and the resulting mixture can be difficult to read. /NODOUBLE forces the display to use only
regular-sized characters (double-spaced as needed) to prevent this.

The /NOREPLY switch means that this emulated VT100 should not transmit any automatic replies to control
sequences sent by the PDP-11. This can be handy if you’re using the “multiple physical ports” feature and want
to make sure that only one of the ports answers when you do something like “SET TERM/INQUIRE”.

The /SIZE:WxH switch sets the size of the text screen to W columns by H lines. The selected window size applies
to what would normally be a VT100 in 80-column mode. If the emulated VT100 receives the escape sequence to
switch to 132-column mode, E11 will attempt to find a video mode which is the same height but 65% wider. If no
such mode is available, E11 will take the closest fit, which may be the same one from before the change. In any
case, a session created with /SIZE:132x24 is not the same as an 80-column VT100 which is initially in 132-column
mode. Sending ESC [?3l to this session will not switch it to 80-column mode.

The SET CONn: SIZE=WxH command sets the default screen size for all future ASSIGN commands on that unit. It
may still be overridden by a /SIZE switch on that ASSIGN.

CONn: is the only device that may be used with the “VT:” VT11 vector graphics display processor, or with the
“VR:” VT30 raster graphics processor. Graphics support requires that an OpenGL driver be installed in the PC’s
operating system. The display speed improves tremendously if the driver supports hardware acceleration, rather
than doing all rendering entirely in software.

6.1.3 Line printer emulation using OS-supplied print drivers

Command syntax:

ASSIGN ddcu: OSPRINT: [switches]

Special switches: see below

Line printer emulation using OS-supplied print drivers 47

This is an interface to the PC operating system’s own print drivers, which are used to emulate a dumb line printer.
There are many switches, which are needed to avoid having to use a print dialog window, since a timesharing
PDP-11 system might need to print whether or not there’s a human user present to start the job.

• /COLOR print in “color” mode if available

• /CR expect CR characters (LF just goes down a line in the same column)

• /DUPLEXBOOK 2-sided printing with all pages the same way around

• /DUPLEXFLIP 2-sided printing with even pages upside-down

• /FEEDHOLES (default) include feed holes with /GREENBAR

• /FONT:‘‘font name” set font name (default is Courier)

• /FORM:size set form size to one of A4, FANFOLD, LETTER, or LEGAL

• /GREENBAR print green-bar paper underlay (may need /COLOR)

• /JOBNAME:‘‘name” set job name for print queue (or CutePDF etc.)

• /LANDSCAPE print with landscape orientation

• /MONOCHROME don’t use color printing for green bars

• /NAME:‘‘font queue name” select name of print queue

• /NOCR (default) LF/VT/FF implies CR (next line starts at left margin)

• /NOFEEDHOLES don’t print feed holes (use with /GREENBAR)

• /NOGREENBAR (default) don’t print green-bar paper

• /NOWRAP (default) truncate long lines

• /PAPERSIZE synonym for /FORM

• /PORTRAIT print with portrait orientation

• /ROTATE:n rotate image by 90, 180, or 270 degrees (mainly for OS/2 where /LANDSCAPE doesn’t work)

• /SIMPLEX single-sided printing

• /SIZE:WxH set size of printing (W columns by H rows)

• /TIMEOUT:n set end-of-job detection timeout to n seconds (default is 5)

• /WRAP wrap long lines onto next line

Not all of the switches work on all host operating systems.

48 Throttled I/O

6.2 PC serial pseudo-devices

This section describes pseudo-device layers which may be configured to modify the behavior of E11’s actual serial
port drivers.

syntax type switches
HAYES: pcdev: Hayes AT command set
KERMIT: pcdev: Kermit client /ESCAPE:nnn
THROTTLE: pcdev: speed limiter for a PC port /RXDELAY:n /TXDELAY:n
dev1 + dev2 + . . . + devn multiple PC ports

6.2.1 Hayes-compatible dialup modems

Command syntax:

ASSIGN pdp11dev: HAYES: pcdev: [/pcswitches]

The HAYES: pseudo-device adds a layer in front of a data-leads-only modem which understands the Hayes “AT”
command set, and makes the modem appear to use the normal RS232 control and status lines. Hayes-style modems
were very popular on personal computers but were generally not supported by PDP-11 operating systems, which
expect something more like a Bell 212A which gives call progress and ringing status using RS232 signals and
responds to the DTR signal to answer and drop calls, and uses the data leads only for in-band data.

The HAYES: layer interprets the ASCII messages from the modem and makes them appear as status signals (CD,
RI, etc.), sends commands to the modem when needed in response to changes in the DTR signal from the PDP-
11, and inserts delays between consecutive “+” characters sent by the PDP-11 to prevent putting the modem in
“command” mode by accident.

If a DN11 auto-dialer is attached to a device that includes HAYES:, any dialing commands that the dialer processes
are sent to the modem.

6.2.2 Kermit file-transfer protocol

Command syntax:

ASSIGN pdp11dev: KERMIT: [/ESCAPE:nnn] [/NOSCOPE] [/SCOPE] pcdev: [/pcswitches]

KERMIT: adds a Kermit file-transfer client to a terminal line. It works the same way as the KERMIT command at
the “E11>” prompt, but it may be added to any serial line (not just the console terminal).

The /ESCAPE:nnn switch gives the octal ASCII code for the character which escapes from pass-through mode to the
Kermit prompt. The default is 35 (CTRL/]). Expressions are accepted, so /ESCAPE:’O&77 may be a slightly easier
way to remember how to set up CTRL/O as the escape character, for example. /SCOPE (default) and /NOSCOPE set
the editing style, so that rubout characters will be handled correctly on video or hardcopy terminals, respectively.

6.2.3 Throttled I/O

Command syntax:

Multiple physical ports on one emulated line 49

ASSIGN pdp11dev: THROTTLE: [/RXDELAY:r] [/TXDELAY:t] pcdev: [/pcswitches]

The THROTTLE: pseudo-device adds a throttle to another serial device, setting a limit on the rate at which characters
are transmitted and/or received. It is an intermediate layer between an emulated PDP-11 port and an actual PC
port, and this is reflected in the command syntax used to configure it. In the ASSIGN command, the THROTTLE:

keyword and its switch(es) go between the emulated PDP-11 device name and the physical PC port name.

The ASSIGN command as shown above creates a PDP-11 serial device and connects it to a PC serial device, and
times all I/O to ensure that transmitted characters go out at least t milliseconds apart, and that received characters
are seen by the PDP-11 hardware at least r milliseconds apart. The /RXDELAY and /TXDELAY switches are both
optional. If either is omitted then serial data pass at full speed in the corresponding direction.

6.2.4 Multiple physical ports on one emulated line

Command syntax:

ASSIGN ddcu: dev1 + dev2 + . . . + devn

A single emulated PDP-11 serial line may be connected to two or more physical serial ports (as described in
section 6.1), by giving multiple physical port names in the ASSIGN command, separated by plus sign (+) characters.
Any data transmitted over that PDP-11 port will be copied to all of the physical ports. Input received on any of
the physical ports will be mixed together and will go in the PDP-11 port’s receiver. Similarly, the emulated modem
control signals will be driven in all of the physical ports, however incoming modem status signals will be sampled
only on the first port (dev1).

The physical port names may be any mixture of PC serial devices. In most cases there is no reason to connect
two physical ports to the same emulated port so this feature will not be used by most users, but it can be useful
for logging purposes or to provide duplicate command terminals so that a system may be controlled from more
than one place. The /NOREPLY switch may be useful on CONn: sessions, in order to prevent E11’s VT100 emulation
from replying to a “what-are-you” escape sequence, in cases where the emulated line is shared with a real terminal
which will try to reply simultaneously.

Example:

ASSIGN TT1: COM1: + CON2:

This command will connect TT1: (the second emulated DL11 port) to both COM1: (the first PC serial port) and
CON2: (the video session which can be popped up with Alt/F2). Output sent to TT1: will appear on both COM1:
and CON2:, and input typed at either port will be received by TT1:.

50 Emulated PDP-11 serial devices

6.3 Emulated PDP-11 serial devices

This section describes each PDP-11 serial device type emulated by Ersatz-11.

name units controller notes
LPu: 0–7 LP11/LPV11
TTu: 0–31 DL11/DLV11 KBu: and YLu: are synonyms
XUu: 0–1 DU11/DUV11
YCu: 0–31 DC11
YGcu: 0–15 DM11
YHcu: 0–15 DH11
YJcu: 0–15 DJ11
YMc: N.A. DM11BB modem control
YVcu: 0–15 DHQ11/DHU11/DHV11/DHZ11 etc.
YZcu: 0–7 DZ11/DZQ11/DZV11

6.3.1 LP: — LP11, LPV11 line printer ports

These ports connect a single line printer, using device registers which look similar to the transmitter half of a
DL11/DLV11 serial line unit. They normally use a Data Products compatible parallel interface to connect to the
printer. Converter boxes are available from Black Box Corporationto allow connecting such a line printer to a PC
RS232 serial port.

SET LP: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

6.3.2 TT: — DL11, DLV11 single serial line units

These are the standard single-line serial ports. Every PDP-11 has at least one, which is used for the console
terminal. By default Ersatz-11 connects the console terminal to CON1:, which is the same VT100 session that E11
uses for its own command prompt. The DLV11J 4-line serial card actually appears to software as four separate
DLV11 ports, so it can be configured in E11 using four ASSIGN commands.

SET TT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DL11A set controller type to DL11A/DL11B/KL11
DL11E set controller type to DL11E
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

Emulated PDP-11 serial devices 51

6.3.3 XU: — DU11, DUV11 single serial line units

The DU11 (M7822 quad Unibus SPC) and DUV11 (M7951 quad Q-bus board) were serial line units, which generally
acted like DL11/DLV11 ports except that they also had some synchronous capabilities, which are currently only
partly supported by Ersatz-11.

SET XU: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.4 YC: — DC11 single serial line units

DC11 ports are similar to DL11s, but with a slightly different register layout, and the ability to choose the baud
rate in software. Each DC11 has four possible choices, which vary by submodel. E11’s defaults come from the
DC11-AA, and are 110, 134, 150, and 300 baud, corresponding to values 0–3 in the “baud rate” fields in the DC11
registers.

SET YC: controller parameters:
BAUD0=n baud rate 0
BAUD1=n baud rate 1
BAUD2=n baud rate 2
BAUD3=n baud rate 3
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.5 YG: — DM11 16-line single-speed serial multiplexer

The DM11 is a rare early 16-line serial multiplexer. Unlike any other serial device, it uses DMA for reception
as well as transmission, although this is basically just an in-core version (which the documentation quaintly calls
the “tumble table”) of the FIFO receive silo used in later devices. The DM11 was the origin of the DM11BB
modem-control option (section 6.3.8), which was more commonly used on the DH11. All lines ran at the same
speed, but E11 allows each to have its own MODE settings as usual.

52 Emulated PDP-11 serial devices

SET YG: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.6 YH: — DH11 16-line serial multiplexer

The DH11 is a 16-line serial multiplexer which fits into its own 9-slot backplane in a Unibus box. It uses DMA
for tranmission, but reception is interrupt-driven using a FIFO buffer. In the base configuration it supports data
leads only. The DM11BB option (see section 6.3.8) adds modem control to the DH11.

SET YH: controller parameters:
CS02 set controller type to CS02 (Q-bus)
CS02 Q22 set controller type to CS02 (Q22)
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DEFAULT set controller type to default (DH11 for Unibus, CS02 for Q-bus)
DH11 set controller type to DH11 (Unibus)
EXTA=n EXTA baud rate
EXTB=n EXTB baud rate
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.7 YJ: — DJ11 16-line serial multiplexer

The DJ11 is a 16-line serial multiplexer in a 4-slot Unibus system unit. It has no modem control or DMA capabilities,
and was a cruder predecessor to the DZ11 series of single-board multiplexers.

SET YJ: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

Emulated PDP-11 serial devices 53

6.3.8 YM: — DM11BB modem control option for DH11 or DM11

The DM11BB plugs into the DH11 backplane and adds modem control to the DH11 or DM11. However, instead
of being controlled using previously reserved fields in the DH11 or DM11 registers, the DM11BB has its own I/O
page registers and interrupt vector, so E11 makes it look like a separate device so that SET YMc: commands can
be used to set the CSR and vector addresses independently of the settings of the corresponding YH: or YG: device.

Since the DM11BB works only in combination with a serial multiplexer, the command to create a DM11BB is
simply “ASSIGN YMc:”. No PC device is specified because that’s done on the ASSIGN YHc: (or YGc:) command
line. The SET YMx: MUX=YHy: (or YGy:) command correlates specific DM11BBs to their DH11 or DM11 owners.
The default is the DH11 with the same controller letter. The DM11BB can be deleted separately from the serial
device, with a DEASSIGN YMc: command.

SET YM: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
MUX= YGc: or YHc:
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.9 YV: — CXA16, CXB16, CXF16, CXF32, CXY08, DHF11, DHQ11, DHU11, DHV11, DHZ11
8/16/32-line serial multiplexers

These boards are basically single-board replacements for the DH11, with a slightly different programming model.
They use on-board microcontrollers and can offload XON/XOFF flow-control processing from the PDP-11. The
first boards in the series were the DHU11 (Unibus) and DHV11 (Q-bus). They are very similar to each other
but the DHU11 has a slightly better programming model, which DEC later adopted as the standard even for
Q-bus versions. The boards are available in many permutations, depending on whether they emulate the DHU11
or DHV11 or both (in which case the emulation is selectable with a DIP switch), whether they support modem
control and status lines, how many lines they have, and what serial interface standard is used.

model module bus lines emulation modem SET YV: keyword in E11
CXA16 M3118-YA Q-bus 16 DHU/DHV no CXA16U or CXA16V
CXB16 M3118-YB Q-bus 16 DHU/DHV no CXA16U or CXA16V
CXF16 M3123-00 Q-bus 16 DHU no two CXA16Us (one unused)
CXF32 M3123-00 Q-bus 32 two DHUs no two CXA16Us
CXY08 M3119-YA Q-bus 8 DHU/DHV yes DHQ11 or DHV11
DHF11 M3123-YA Q-bus 32 two DHUs no two CXA16Us
DHQ11 M3107 Q-bus 16 DHU/DHV yes DHQ11 or DHV11
DHU11 M3105 Unibus 16 DHU yes DHU11

DHV11 M3104 Q-bus 8 DHV yes DHV11

DHZ11 M3117 Q-bus 16 DHV yes DHZ11

In the table above, if two different SET keywords are listed, the first is for DHU11 mode and the second is for
DHV11 mode.

The “CX” series Q-bus boards fit the shielded BA200 series “S-box” cabinets, other Q-bus versions fit in regular
BA23/BA123 cabinets. The difference between the CXA16 and the CXB16 is the external interface, RS423 for the
CXA16 and RS422 for the CXB16.

54 Emulated PDP-11 serial devices

The CXF16, CXF32, and DHF11 use dual fiber optic cables to connect the board to one or two RS423 16-line
distribution panels. All three of these options actually have double register sets and interrupt vectors, and appear
to software as two separate CXA16s (DHU11 mode), one of which is unused in the CXF16. Therefore they use up
two consecutive “controller” letters in E11 (e.g. YVA: and YVB:).

The DHZ11 16-line board was apparently sold only in the South Pacific region, and uses an Am2901-based micro-
machine instead of the usual 8051 processor(s).

SET YV: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
CXA16U set controller type to CXA16 in DHU11 mode (Q22, 16 lines, no modem

control)
CXA16V set controller type to CXA16 in DHV11 mode (Q22, 16 lines, no modem

control)
DEFAULT set controller type to default (DHU11 for Unibus, DHV11 for Q-bus)
DHQ11 set controller type to DHQ11 in DHU11 mode (Q22, 8 lines)
DHU11 set controller type to DHU11 (Unibus, 16 lines)
DHV11 set controller type to DHV11 (Q22, 8 lines)
DHZ11 set controller type to DHZ11 (Q22, 16 lines)
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.10 YZ: — DZ11, DZQ11, DZV11 4/8-line serial multiplexers

This series of boards is essentially a compressed version of the old DJ11 multiplexer, with slightly different registers.
Some confusion about port numbering is possible because the early non-FCC Unibus cabinet kits supported 16 lines
even though the DZ11 boards only had 8 lines each, so it takes two boards to drive all 16 lines of the distribution
panel. This is outlined below:

model interface distribution panel
DZ11A RS232 16 lines (only 8 work)
DZ11B RS232 none (adds 8 more ports to DZ11A)
DZ11C 20 mA 16 lines (only 8 work)
DZ11D 20 mA none (adds 8 more ports to DZ11C)
DZ11E RS232 DZ11A + DZ11B (16 working lines)
DZ11F 20 mA DZ11C + DZ11D (16 working lines)

The Q-bus versions (DZQ11 and DZV11) support only 4 lines instead of 8. The DZQ11 is a newer dual-height
version of the quad-height DZV11.

Emulated PDP-11 serial devices 55

SET YZ: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DEFAULT set controller type to default (DZ11 for Unibus, DZQ11 for Q-bus)
DZ11 set controller type to DZ11 (Unibus, 8 lines)
DZQ11 set controller type to DZQ11 (Q-bus, 4 lines)
DZV11 set controller type to DZV11 (Q-bus, 4 lines)
LOCK lock MODE settings against changes by PDP-11
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
UNLOCK unlock MODE settings
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

6.3.11 PT: — PDT-11/130 TU58

This is the not-quite-DLV11 serial port used for the TU58 cartridge tape drive in a PDT-11/130 microcomputer
(see Appendix D). The port differs from a regular DLV11 port in that the “receive” register at base+2 and the
“transmit” register at base+6 are combined into a single read/write register at base+2. The normal usage of this
device is to “ASSIGN PT0: DD:” to attach it to a TU58 controller, and then use “MOUNT DDn:” commands to set
up one or both TU58 units.

SET PT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
MODE=b,p,d,s set communications parameters
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

Chapter 7

Miscellaneous Devices

This chapter describes devices which don’t fit into any of the major categories covered in the preceding chapters.
This includes bus adapters,igital I/O interfaces, graphics displays, paper tape I/O, and the interface to the PC’s
native file system.

Miscellaneous PDP-11 devices:

name unit(s) controller command to create type
(none) INSTALL user-written loadable .DLL module
(none) LOAD/ROM ROM devices
CD: 0–1 CD11 ASSIGN punched card reader
CR: 0–1 CR11, CM11 ASSIGN punched card reader
DO: 0–3 virtual MOUNT PC file interface
IX: A–B 0–1 IEU11A, IEQ11A ASSIGN dual GPIB ports
KD: A–D M8644 CDR ASSIGN countdown registers
KG: 0–1 virtual ASSIGN communications arithmetic board
KP: 0–1 KW11P ASSIGN programmable clock
OA: 0–3 DR11C/DRV11 ASSIGN PIO digital I/O
PP: 0 PC11 MOUNT paper tape punch
PR: 0 PC11 MOUNT paper tape reader
TK: 0 Terak ASSIGN bitmapped graphics display
VR: 0 VT30 ASSIGN color graphics display
VT: 0 VT11 ASSIGN vector graphics processor
XA: 0–3 DR11W/DRV11WA ASSIGN DMA digital I/O
XN: 0–3 DN11 ASSIGN auto-dialer

7.1 Installable user-written plug-in emulation modules

Command syntax:

INSTALL [d:path\]filename[.DLL]

Special switches: none

This command allows custom user-written (or third-party) plug-in emulation modules to be dynamically installed

56

ROM devices 57

at run time. This makes it possible for custom hardware to be emulated, without requiring access to the Ersatz-11
source code. Modules are coded in C or 80x86 assembly language, and linked to produce Win32-format dynamic
link libraries (“.DLL” files). The .DLL loader is part of E11 itself rather than a service of the PC operating system,
so the same module format is used in the DOS, Windows, and Linux versions of Ersatz-11, allowing some modules
to run unchanged in all environments.

E11 provides a wide selection of callable entry points to be used by the device emulation module. Typically a
loaded module will uses these services to register a range (or ranges) of I/O page addresses which it wants to
handle. Then, whenever the PDP-11 accesses a device register in that range, the user code is called to emulate
the register. Calls are also provided to enqueue and cancel interrupt requests, and also to perform emulated DMA,
allocate/free memory, etc. The programming interface is described in Appendix C.

Loadable modules can also provide a wide range of other services besides just emulating existing custom hardware.
Modules have been written which support high-speed inter-task communications (to connect the PDP-11 system
to other software running on the same PC under a multi-tasking operating system), extended memory for virtual
arrays, and access to a dual-ported memory device for connecting to another processor, among other things.

D Bit can provide programming information, sample code, and consulting services for users who wish to implement
a custom device emulation module.

7.2 ROM devices

Command syntax:

LOAD/[EEP]ROM [/BANKED] [d:path\]filename[.PDP] start[:end]
LOAD/[EEP]ROM [/BANKED] NULL: start[:end]

Special switches: /BANKED, /EEPROM, /ROM

E11 can simulate ROM devices, either simple unbanked ones such as the M9312 bootstrap/diagnostic board, or
banked ones like the BDV11 board or the on-board ROM in the later quad-height Q-bus CPU modules.

ROM data are loaded from the specified binary file, which is located using E11’s usual search rules (see section 1.9).
Using NULL: as the filename reads all zeros, and can be handy for making place-holders for missing devices on the
I/O page.

More than one ROM device can be loaded; for example, the individual 128-byte device bootstraps in a M9312 style
ROM board (or the on-board equivalents in a PDP-11/24 or PDP-11/44 CPU) can be loaded from separate files
with separate commands.

For linear (non-banked) ROMs, a starting address in the I/O page must be specified. The data from the file will
appear starting at that address. If an ending address is specified, the file must be at least long enough to reach
that address. If no ending address is given, the length of the emulated ROM is the same as the length of the binary
file.

A M9312-style bootstrap/diagnostic ROM board can be configured and started with the following commands:

E11>LOAD/ROM DIAGBOOT.ROM 17765000

E11>LOAD/ROM RL02BOOT.ROM 17773000

E11>LOAD/ROM MSCPBOOT.ROM 17773200

...

58 CD: — CD11 punched card reader

E11>GO 165020

000000 000000 000000 000000

@

This is just an example of what can be done. Normally there would be no point in using the M9312 boot ROMs
since E11 contains its own bootstraps for all bootable devices that it emulates. Anyway there may be legal problems
with copying those ROMs into image files, since they are copyrighted by DEC.

For banked ROMs, the /BANKED switch must be used. The data from the file will appear through a 512.-byte
window, and the page which is visible is selected by the PDP-11 using the page control register (PCR), which for
emulation purposes is considered by E11 to be part of the CPU board (since in most cases, it is).

There are two styles of page control register. SET CPU KDF11 (or SET CPU BDV11) selects the style used in the
KDF11 on-board ROM (or the BDV11 boot/diagnostic board). SET CPU KDJ11 selects the style used in the
on-board ROM of the KDJ11x CPU boards.

The starting address for banked ROM windows is either (17)773000 or (17)765000. The windows must be 512. bytes
long, which is E11’s default anyway so there’s no need to give the end of the address range. The /EEPROM switch
means that the memory is actually EEPROM (as used on the KDJ11x CPU boards), and must go in the window
starting at (17)765000. This is the default, so there’s no need to give any address range at all with LOAD/EEPROM.
Note that while the memory can be written, the data written are not saved to the file from which the EEPROM
was loaded. Regular ROM data go in the window starting at (17)773000, so this is the default for LOAD/ROM.

ROM devices can be removed at any time using the UNLOAD command. The switches and defaults are the same as
for LOAD, so the starting address of the ROM to remove need not be specified if the /BANKED switch is used.

7.3 CD: — CD11 punched card reader

Command syntax:

ASSIGN CDcu: [d:path\]filename[.TXT]
ASSIGN CDcu: [d:path\]filename[.CRD] /BINARY
ASSIGN CDcu: NULL:

Special switches: see below

The CD11 is a medium-speed (DMA) punched card reader. It reads a stack of 80-column, 12-row punched cards,
which may contain binary data, or text encoded using various versions of Hollerith. The ASSIGN CD: command
uses the same syntax as the CR11’s ASSIGN CR: command, except for the device name itself. See below.

SET CD: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
REWIND rewind card deck to beginning
VECTOR=nnn set vector address to nnn octal

CR: — CR11, CM11 punched card reader 59

7.4 CR: — CR11, CM11 punched card reader

Command syntax:

ASSIGN CRcu: [d:path\]filename[.TXT]
ASSIGN CRcu: [d:path\]filename[.CRD] /BINARY
ASSIGN CRcu: NULL:

Special switches: see below

The CR11 and CM11 are punched card readers. Ersatz-11 reads the card data from a PC file, which may be either
in binary format (if /BINARY is specified), in which case each 12-bit column is right-justified in a 16-bit word stored
in PDP-11 byte order, or plain ASCII text if BINARY is omitted. Text is punched on cards using one of several
Hollerith codes, which PDP-11 device drivers normally translate to ASCII. The /DEC026, /DEC029, and /IBM1401

switches specify which encoding the PDP-11 is expecting, so that E11 will do the inverse.

ASSIGN CR: NULL: gives a card reader that’s always at the end of the deck.

SET CR: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ4 for Q-bus)
REWIND rewind card deck to beginning
VECTOR=nnn set vector address to nnn octal

The following ASSIGN switches apply to both CD: and CR:

ASSIGN CD:/CR: unit switches:
/026 syn. for DEC026
/029 syn. for DEC029
/1401 syn. for IBM1401
/ANSI syn. for DEC029 (it’s really the ANSI variant)
/BINARY binary file (otherwise ASCII)
/DEC026 use 029 keypunch code
/DEC029 use 026 keypunch code
/DEC1401 syn. for IBM1401
/EOFCARD include virtual EOF card (default)
/IBM1401 use 1401 keypunch code
/NOEOFCARD empty hopper when end of file reached
/NOTABS disable tab expansion
/TABS tabs every 8 columns (default)
/TABS:n tabs every n columns
/TABS:FORTRAN tabs using FORTRAN rules for columns 6/7

7.5 DO: — PC file access pseudo-device

Command syntax:

MOUNT DOn:

60 KD: — M8644 countdown register board

Special switches: none

DO: refers to the “DOS file device”(the name is left over from the DOS version of Ersatz-11) . This is a pseudo-device
which allows privileged PDP-11 programs and/or device drivers to read and write native PC files from within the
emulated PDP-11. It is compatible with the supplied DO.SYS device driver for RT-11, and the DOS.TSK program
for RSX which is available from ftp.dbit.com. The command to create a DOS file device is simply “MOUNT
DOn:”, since there is no particular physical PC device attached to the physical side of the emulation. In E11 prior
to V2.2, one DOS file device was always configured, but now they must be created explicitly. Normally there’s no
reason to have more than one, so you can recreate the V2.1A behavior by simply adding “MOUNT DO:” to your
E11.INI initialization command file.

7.6 IX: — IEU11A, IEQ11A dual GPIB interface

Command syntax:

ASSIGN IXcu: NULL:

Special switches: none

The IEU11A (M8648 hex Unibus SPC) and IEQ11A (M8634 quad Q-bus) boards are dual-channel GPIB ports.
Ersatz-11’s emulation of them is currently a partial proof-of-concept implementation, and works only with the
NULL: device and the LOG command.

SET IX: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
DEFAULT set controller type to default (IEU11A for Unibus, IEQ11A for Q-bus)
IEU11A set controller type to IEU11A (Unibus)
IEQ11A set controller type to IEQ11A (Q-bus)
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

7.7 KD: — M8644 countdown register board

Command syntax:

ASSIGN KDc:

Special switches: none

The M8644 countdown register board was a special-purpose device made by DEC Computer Special Systems.
It countains four separate channels of 16-bit counters, each of which counts down every millisecond and can be
configured to cause an interrupt upon reaching zero. The command to create a countdown register board is simply
“ASSIGN KDc:”, since there is no particular physical PC device attached to the physical side of the emulation. On
the real device, the interrupt vector and priority were settable for each channel, so E11 has separate SET commands
for each unit number, even though the four units are otherwise considered to be a single device.

KG: — KG11A communications arithmetic board 61

SET KD: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

7.8 KG: — KG11A communications arithmetic board

Command syntax:

ASSIGN KGc:

Special switches: none

The KG11A arithmetic option (M7251 quad Unibus SPC) is a simple coprocessor that helps with block checks used
in communications, mainly CRCs. Since there’s no PC device associated with it, the command to create a KG11A
is just “ASSIGN KGc:”. It does not use interrupts.

SET KG: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal

7.9 KP: — KW11P programmable clock

Command syntax:

ASSIGN KPn:

Special switches: none

The KW11P (M7228) is a programmable clock, on a quad Unibus SPC. It has a 16-bit up/down counter which
can be programmed for one-shot or periodic use. It has on-board crystal-controlled 10 kHz and 100 kHz clocks,
and can also be triggered by the AC line frequency, which requires a connection from the power supply to pin CE1
of the KW11P’s slot, or by low-to-high transitions on an external TTL input, which is connected to spade lugs on
the M7228 board.

The command to create a KW11P is simply “ASSIGN KPn:”, since there is no particular physical PC device
attached to the physical side of the emulation. The 10 kHz and 100 kHz clocks are derived from the PC’s internal
timer, as is the AC line input, which ticks at the frequency set by the SET HERTZ command (60 Hz by default).

SET KP: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ6 for Q-bus)
VECTOR=nnn set vector address to nnn octal

62 PP: — PC04 paper tape punch

7.10 OA: — DR11C, DRV11 digital I/O ports

Command syntax:

ASSIGN OAn: ETHER: etherport [switches]
ASSIGN OAn: NULL: [switches]

Special switches: /INDELAY:n, /OUTDELAY:n

The DR11C (M7860 quad Unibus SPC) and DRV11 (M7941 dual Q-bus card) are simple programmed I/O boards
which provide unidirectional 16-bit input and output ports, two general-purpose control outputs, and two inputs
which can be used for status and/or to generate interrupts. They do not use DMA, and are commonly used for
connecting to simple external devices or for (relatively) low-speed inter-processor communications.

The /INDELAY:n and /OUTDELAY:n switches on the ASSIGN command may be used to slow down port access to
accommodate slow external hardware. n is the number of microseconds to delay before reading the input lines,
or after writing the output lines. These may also be used as INDELAY=n and OUTDELAY=n options on a SET OA:

command line.

SET OA: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
INDELAY=n set delay before reading in usec (0–1000)
OUTDELAY=n set delay after writing in usec (0–1000)
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

7.10.1 ETHER: — Point-to-point IPL using Ethernet

See discussion under DR11W (XA:).

7.10.2 NULL: — Null device

See discussion under DR11W (XA:).

7.11 PP: — PC04 paper tape punch

Command syntax:

MOUNT PP: [d:path\]filename[.PAP]

Special switches: none

The PC04 is a high speed paper tape reader/punch, interfaced to the PDP-11 through a PC11 interface. This
command attaches the specified PC file to the output half of the device, so that data bytes sent to the punch will
be written to the file instead.

PR: — PC04 paper tape reader 63

In E11 prior to V3.0, one paper tape reader/punch was always configured, but now they must be created explicitly.
You can recreate the V2.2 behavior by adding “MOUNT PR: NULL:” to your E11.INI initialization command file,
and issue new MOUNT command(s) later to change the file(s) used.

See below for SET commands. The PC11 is a combined reader/punch controller so one set of settings configures
both the reader and punch halves.

7.12 PR: — PC04 paper tape reader

Command syntax:

MOUNT PR: [d:path\]filename[.PAP]
MOUNT PR: NULL:

Special switches: none

This command attaches the specified PC file (or a host-OS-independent null device) to the input half of the
PC11/PC04, so that input bytes will come from the file. The BOOT PR: command supports binary executable tape
images written in the Absolute Loader format (e.g. by the LINK /LDA command in RT-11). The SET PR: REWIND

command will reset the tape to begin reading at the beginning of the file on the next access.

In E11 prior to V3.0, one paper tape reader/punch was always configured, but now they must be created explicitly.
You can recreate the V2.2 behavior by adding “MOUNT PR: NULL:” to your E11.INI initialization command file,
and issue new MOUNT command(s) later to change the file(s) used.

SET PR: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
REWIND rewind tape to beginning
VECTOR=nnn set vector address to nnn octal

7.13 TK: — Terak bitmapped graphics display

Command syntax:

ASSIGN TK: CONn:

Special switches: none

The Terak 8510/a’s most notable feature is a bitmapped 320x240 graphics display, superimposed on an 80x24 text
display (640x240 pixels) with the character generator in RAM. See Appendix D for a sample initialization file for
emulating a Terak system.

The graphics display also includes hardware to emulate the standard 177560/60 console DLV11 port. The “receive”
half of the port is real, and is connected to the Terak keyboard. The “transmit” half is designed to work with
a software terminal emulator. If a character is written to the transmit buffer register (at 177566), an interrupt
(normally to vector 164) happens immediately. The interrupt service routine reads the character back out of the

64 VT: — VT11 vector graphics display processor

transmit buffer, at which point the port signals completion the same way a DLV11 does (by setting the “ready”
bit in the transmit CSR at 177564, and interrupting through vector 64 if interrupts are enabled). Meanwhile the
interrupt service routine (for vector 164) takes care of updating the screen.

Since the DLV11-like port uses the same addresses as TT0: (E11’s console terminal), a “SET TT0: CSR=nnnnnn”
command should be issued to move TT0: to a non-conflicting address before ASSIGNing TK:. TK:’s CSR/VECTOR
settings are for the DLV11-like console port. The CCSR address is for the 4 KB character memory window
(switchable between the page buffer and the character generator with a CSR bit), and the GCSR address is for the
graphics controller’s three registers.

SET TK: controller parameters:
CCSR=nnnnnn set character buffer CSR address to nnnnnn octal
CSR=nnnnnn set DLV11 CSR address to nnnnnn octal
EVECTOR=nnn set terminal emulator vector address to nnn octal
GCSR=nnnnnn set graphics controller CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

7.14 VR: — VT30 color graphics display processor

Command syntax:

ASSIGN VR: CONn:

Special switches: none

The VT30 “Colour Mimic Diagram Display System” is a simple display-list-based raster graphics device, built by
DEC CSS in Reading, UK. It is a Unibus device, mounted in a 5.25” high external box. It displays 8x8 characters
from a software character generator on a 64x36 grid, yielding 512x288 pixels, displayed on an attached PAL monitor.

E11 requires an EGA, VGA, or SVGA with at least 256 KB of memory to emulate the VT30. The VT30 screen
can be popped up with an Alt-function key just like a VT100 session.

SET VR: controller parameters:
COLOR color monitor (default)
CSR=nnnnnn set CSR address to nnnnnn octal
GRAYSCALE gray-scale monitor (for future expansion, currently always white)
MONOCHROME monochrome monitor (black or white only)
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

7.15 VT: — VT11 vector graphics display processor

Command syntax:

ASSIGN VT: CONn:

XA: — DR11W, DR11B, DRV11WA, DRV11B digital I/O ports 65

Special switches: none

The VT11 vector graphics display processor consists of three hex-height boards in a 4-slot backplane. It maintains
the picture on a VR14 or VR17 monitor by constantly scanning a display list held in PDP-11 memory, and refreshing
each vector many times per second. It can be used with a DEC model 375 light pen, and an LK40 ASCII keyboard.

The VT11’s output is displayed in a window. The VT11 is assigned to one of the twelve possible virtual console
sessions, so it can be popped up with an Alt-function key just like an emulated VT100 session, except of course
that it runs the display in graphics mode.

The mouse is used to emulate the DEC model 375 light pen. The crosshairs indicate the mouse position continuously
(since a mouse can’t be lifted away from the screen like a real light pen), so the left mouse button is used to indicate
whether a light pen “hit” should be allowed to register. The PC keyboard takes the place of the LK40 keyboard
on a GT40 system, so all keyboard input typed to a VT11 session is sent to TT0:.

SET VT: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal

7.16 XA: — DR11W, DR11B, DRV11WA, DRV11B digital I/O ports

Command syntax:

ASSIGN XAn: ETHER: etherport [switches]
ASSIGN XAn: NULL: [switches]

Special switches: /DIRECTION:xxxxxxxx

The DR11W, DR11B, DRV11WA, and DRV11B are DMA I/O boards which provide 16-bit input and output ports,
which transfer data in and out of PDP-11 memory using DMA. They look more or less like a typical disk/tape
controller to software, with the usual registers for the bus address and word count, and a CSR with three function
bits and a “GO” bit. There are also three status bits which are controlled by the attached device, and an “attention”
mechanism for notifying the PDP-11 of asynchronous events. They are typically used to connect high-speed external
devices, or for high-speed inter-processor communications.

The DEC DR11W (etc.) interface cables have a pin called C1 CNTL H (or some variant) which tells the DR11W
whether to transfer data from memory to the external device, or the other way around. PC digital I/O devices
typically aren’t able to choose the direction on the fly like this, and are designed to be programmed for the proper
direction before the block transfer begins. Since the real DR11W doesn’t work this way, the PDP-11 program
doesn’t set the direction into the interface, and anyway there’s no register bit to indicate it.

This means that Ersatz-11 has no way of knowing the direction of transfer, so it can’t program the PC interface with
the proper direction. To work around this, ASSIGN XA: takes the “/DIRECTION:xxxxxxxx” switch. This method
assumes that for each possible combination of the three FNCT bits on the interface (which are written by bits 1-3
of the DR11W CSR), the direction of transfer is always the same. The xxxxxxxx string contains one letter for each
possible function opcode 0–7. The letter is “I” if that opcode indicates an input transfer from the external device
to the PDP-11, or “O” if the opcode means DMA output from the PDP-11 to the device. For function codes that
are never used, the setting does not matter. It may take some experimentation and/or test equipment to determine
the correct directions, if the DR11W driver source code is not available, since unfortunately there’s no way for E11
to auto-detect this.

66 XN: — DN11 auto-dialer controller

SET XA: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
CSR=FLOATING set CSR address to be auto-configured
DR11B set controller type to DR11B
DR11W set controller type to DR11W
DR11W NOEIR set controller type to DR11W with error/information register disabled
DRV11B set controller type to DRV11B
DRV11WA set controller type to DRV11WA
DRV11WA Q18 set controller type to DRV11WA with Q22 bus address extension register

disabled
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR5 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

7.16.1 ETHER: — Point-to-point IPL using Ethernet

Command syntax:

ASSIGN XAn: ETHER: etherdev [switches]

Special switches: none

This interface is provided for using a pair of emulated DR11Ws as a point-to-point inter-processor link between
E11 systems. It uses a simple private protocol (details available upon request) using DEC’s “customer” protocol
number, so it should not interfere with most Ethernet traffic, but it’s really intended for point-to-point connections
(two NICs cabled directly together with no hub) and uses the broadcast address, at least until it discovers the other
side’s MAC address.

7.16.2 NULL: — Null device

Command syntax:

ASSIGN XAn: NULL: [/LOOPBACK] [switches]

Special switches: none

Placeholder device. Ignores output, and all lines read as zeros. The /LOOPBACK switch makes PIO output data loop
back to the input port.

7.17 XN: — DN11 auto-dialer controller

Command syntax:

ASSIGN XNn: pdp11dev: [switches]

Special switches: /DIRECTORY:[d:path\]filename[.TXT]

XN: — DN11 auto-dialer controller 67

The DN11 is a controller for the Bell 801 automatic calling unit (ACU), which is a touch-tone dialer that’s typically
paired with a Bell 212A modem (etc.). It transmits digits and receives status using a simple parallel interface with
RS232-like signal levels. A DN11AA backplane accepts up to four DN11AD units, each of which drives its own 801
while sharing selection/interrupt hardware with the other units in the backplane.

The ASSIGN command specifies which PDP-11 device is dialed by this DN11 unit. This is meaningful only for serial
and DDCMP devices, and only if they’re connected to PC devices that can make outgoing connections. For serial
lines this means any real serial port that has the HAYES: layer in front of it. The DN11 will dial the real modem in
this case. The TELCLIENT: device can also be dialed by a DN11. For DDCMP network devices, the DN11 works
with real asynchronous/synchronous ports (which again must be behind a HAYES: layer), or with UDP: or TCP:

connections. If the DN11 is connected to a PDP-11 device which can’t usefully dial out, dialing has no effect.

The /DIRECTORY switch gives the name of a text file which translates between the telephone number sent to the
DN11 and the actual telephone number or network address to used. Each line of the file has the telephone number to
replace, an equals sign, and the string to use as a substitute, for making the actual connection. Blanks are ignored,
as are (,), -, and . characters in the phone number, and everything after a ; or ! is a comment. Whatever’s to
the right of the equals sign is used for making the connection. For HAYES: this is just another telephone number,
but it can include things like “,” (which adds a delay in the ATDT command) which can’t be sent by a DN11. For
network connections, it’s the remote network address, of the form “a.b.c.d:port”.

Sample directory file:

; dialed = actual

(800) 258-1710 = 192.168.1.99:1134

547-4005 = 10.1.0.6:23

411 = 127.0.0.1:32767

SET XN: controller parameters:
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR4 for Unibus, BIRQ4 for Q-bus)
VECTOR=nnn set vector address to nnn octal
VECTOR=FLOATING set vector address to be auto-configured

Chapter 8

Commands

Ersatz-11 recognizes many keyboard commands. These are entered at the “E11>” prompt, which appears whenever
the PDP-11 is halted (e.g. at startup) but may be brought up at any time by pressing Shift-Enter or Alt-SysReq,
or by pressing the BREAK key on a serial terminal if the console terminal (TT0:) has been ASSIGNed to a COM
port. The SET BREAK command can define a regular ASCII character that pops up a prompt if these methods
are all inconvenient. Some versions of the Windows DOS box intercept Alt-SysReq, but Shift-Enter still works.
Commands (and parameters and switches) may generally be shortened to any unique abbreviation. Note that E11
is multithreaded and PDP-11 code continues to be executed while you are entering commands at the prompt, if
you haven’t HALTed it.

Ersatz-11 supports command line editing and recall at the “E11>” prompt, using the VT52/VT100 arrow keys and
some control characters.

key action
CTRL/A go to beginning of line
CTRL/D delete character to right of cursor
CTRL/E go to end of line
CTRL/H go to beginning of line
CTRL/J delete word to left of cursor
CTRL/K delete to end of line
CTRL/L clear screen and re-display line
CTRL/R re-type line
CTRL/U delete to beginning of line
CTRL/W delete word to left of cursor
CTRL/Z exit prompt and connect to TT0:
DEL delete character to left of cursor
left arrow move left one character
right arrow move right one character
up arrow move up a line in history buffer
down arrow move down a line in history buffer

68

@ 69

@file[.CMD]

Accepts input from the specified file as if it had been typed at the E11 prompt. The default extension is “.CMD”,
and search rules are the same as for the E11.INI initialization file (see section 1.9). Command files may be nested
up to four deep. Lines read from the file are not echoed.

ASSEMBLE [/switches] [addr]

Starts the mini-assembler at the specified address, in the specified address space (syntax and defaults are the same
as for the LIST command). E11 will prompt with the address, and you can type in lines of PDP-11 assembly
code, which E11 will translate to machine language and deposit into PDP-11 memory at that address. E11 keeps
prompting for more lines (at updated addresses) until the user enters a blank line, or types CTRL/C. The syntax
is a subset of the standard MACRO-11 syntax. Simple expressions are allowed in operands but there is no symbol
table, macro processor, or conditional assembly. Only the .BYTE, .WORD, .BLKB, .BLKW, .ASCII, and .ASCIZ
pseudo-operations are supported.

Example:

E11>a 1000

001000 mov #1022,r5 ;point at string

001004 tstb @#177564 ;is port ready?

001010 bpl 1004 ;spin until it is

001012 movb (r5)+,@#177566 ;send next character

001016 bne 1004 ;loop unless it was a NUL

001020 halt ;stop in that case

001022 .asciz /Hello there/<15><12> ;test string

001040 ^C

E11>g 1000

Hello there

%HALT

R0/000000 R1/000000 R2/000000 R3/000000 CM=K PM=K PRIO=0

R4/000000 R5/001040 SP/000000 PC/001022 N=0 Z=1 V=0 C=0

001022 add (r5)+,(r0)

E11>

ASSIGN pdp11dev: pcdev: [switches]

Assigns a physical PC device to emulate the specified PDP-11 serial, network, or digital I/O device. See chapter 6
for information about serial devices.

pdp11dev is the name of the PDP-11 device name being created. It conforms to the syntax defined in section 1.8.
The first two letters define the device type, and are generally the same as the PDP-11 operating system’s name for
that device.

pcdev is the name of the PC device which will emulate this PDP-11 device. Within each class of peripherals (serial,
network, digital I/O), any PC device may be used to emulate any similar PDP-11 device.

The optional switches consist of keywords which begin with a forward slash character (“/”). Some switches take a
value, which is preceded by a “:” or “=” character. The acceptable switches vary depending on the device names
used. See the section describing the device for more information.

Most ASSIGN commands can accept a range of unit numbers in the pdp11dev device name, and will create every

70 BREAKPOINT

unit in the range with one command. This is done by giving the device name with the lowest unit number first,
followed immediately by a hyphen, and then the highest unit number. For example, “TT1-4:” refers to TT1:, TT2:,
TT3:, and TT4:. pcdev should not contain a range. It should refer to the unit that goes with the lowest PDP-11
unit number. This unit number is incremented automatically for the other devices in the range, except for cases
like “TELNET:” and “NULL:” where this wouldn’t make sense.

BOOT ddu: [/switches]

Boots the system from the specified disk, magnetic tape, DECtape, network device, or paper tape. The disk/tape
must have been mounted with the MOUNT command, unless it is a real device attached through a bus adapter. The
optional switch is an OS name. Useful switches are /RT11 and /RSTS. /RSX is accepted too but has no special
effect. This has to do with the method used to pass time and date information to a newly booted monitor. RT-11
ignores the time and date passed at 005000 unless the NOP in word 000000 of the bootstrap is cleared to 0 (HALT)
and the bootstrap is entered at 000002. RSTS uses the time and date at 001000 (in a different format from RT-11)
regardless of whether its NOP was cleared, but later versions of RSTS save the first word of the bootstrap and
execute it later, so they will halt if the system was booted the RT-11 way. Hence Note that the OS switches are
meaningful only on block devices. If you prefer to set the time and date manually then the switch is not needed.
RSX doesn’t have a way to pass the time and date to a fresh monitor, so you’ll have to use “F12” with a TIM
command, or else use the TOY.TSK program (available on ftp.dbit.com) to read the TOY clock, which can be
enabled on any emulated CPU type by putting ASR as the last item on the SET CPU command line. Recent RSX-
11M-PLUS versions have a built in TIM /SYN command to do this, which works if the CPU type is PDP-11/93 or
PDP-11/94.

There is also a /HALT switch, which tells E11 to go as far as loading block 0 into core and setting up the registers,
but to stop there. This can be handy for debugging boot blocks.

The BOOT PR: command expects a tape image in absolute binary format, as produced by the “LINK /LDA” command
under RT-11.

BREAKPOINT expression
BREAKPOINT [/LIST]
BREAKPOINT /CLEAR[:n]

Defines/lists/removes breakpoints with arbitrary conditions. The /LIST switch (or a BREAKPOINT command with
no parameters) lists all existing breakpoints. /CLEAR:n clears a specific breakpoint from the list, while /CLEAR with
no number clears all breakpoints. Each breakpoint causes the processor to halt when a specified boolean expression
is true. The tests are compiled into native 80x86 code to reduce debugging overhead, and are checked before each
PDP-11 instruction is fetched. Expressions may use any of the following:

• Constants: octal, decimal (if contains 8 or 9 or ends in .), hexadecimal (if preceded by “^X”), or the value of
an ASCII character as “’a”, a pair of ASCII characters as “"ab”, or radix-50 triplet (preceded by “^R”).

• Registers: R0, R1, R2, R3, R4, R5, SP, PC, CM (current mode, 0–3), PM (previous mode, 0–3), and PRIO
(CPU priority, 0–7).

• Functions which read memory, and take an address as their argument: CD(), CI() (current D and I space),
PD(), PI() (previous D and I space), KD(), KI() (kernel D and I space), SD(), SI() (supervisor D and I space),
UD(), UI() (user D and I space), PHYS() (physical memory given a 16-, 18-, or 22-bit address, depending
on the emulated CPU model), and byte versions of all of these functions which read only a byte (which is
zero-extended) and have the same names but ending in B.

• Unary operators: +, -, ˆC (one’s complement), NOT, @ (@x is shorthand for CD(x))

• Binary operators: +, -, !, *, /, MOD, &, AND, OR, XOR, =, <>, <, <=, >, >=

CALCULATE 71

All math is unsigned and uses 32 bits (to make it possible to pass arguments larger than 16 bits to PHYS() and
PHYSB()). The expression syntax is supposed to be familiar to BASIC users, with a few MACRO-11 operators
thrown in, but FORTRAN equivalents of the relational and boolean operators are also accepted. If something in a
breakpoint expression triggers an error (bus timeout, MMU error, odd address, or division by zero), that expression
is treated as false. The CPU will not halt on the very first fetch after GO, PROCEED, STEP, etc. This makes it possible
to move past a breakpoint condition to the next match without having to delete the breakpoint. If an expression
is just a constant value, it is taken to be a PC address where execution should halt.

Examples:

E11>breakpoint ci(pc) & 177400 = 104000

Stops whenever the PC points at an EMT instruction.

E11>breakpoint pc >= 1000 and pc < 1400 and @sp = 123456

Stops when the top word on the stack is 123456 and the CPU is executing code between 1000 and 1376.

E11>breakpoint @140000 <> 0

Stops when the word at 140000 becomes non-zero.

CALCULATE expr
& expr (synonym)

Calculates the value of a 32-bit expression and displays the result in octal, decimal, hex, ASCII and radix-50. The
operators are * / + -, unary + - ^C (where “ˆC” means logical complement), and (), with the usual precedence.
& and ! are the bitwise AND and OR operators, and have the same precedence as * and +, respectively. Numbers
are either octal digit strings, or decimal if they contain 8 or 9 or end in “.”, or hex if preceded by “^X”, or radix-50
triplets if preceded by “^R”. General register contents may be specified using the names R0–R5 (with a “’” suffix
to indicate the other register set, when emulating a PDP-11 with dual register sets) or SP or PC, R$ or PS means
the processor status word, and something of the form “’a” means the ASCII value of the character “a”.

E11 can accept expressions in most of the commands or switches which take numeric arguments. The default radix
depends on the particular command or switch.

C: (etc.)

Changes the default PC disk drive to the one specified.

CD [d:][path]

Changes the current directory on the PC, or displays the current directory if none is given.

DEFINE KEYPRESS keyname = statement
DEFINE KEYRELEASE keyname = statement
DEFINE MOUSEPRESS buttonname = statement
DEFINE MOUSERELEASE buttonname = statement

Defines the action taken when the specified key or mouse button is pressed or released. Keyboard operation is
defined using a simple script language, which allows the user to bind a small script to any possible keypress or
keyrelease, which is executed whenever that key is pressed (DEFINE KEYPRESS) or released (DEFINE KEYRELEASE).
The mouse uses the same keyscript language, defined using the DEFINE MOUSEPRESS/MOUSERELEASE commands.
When E11 is first started, the keyboard is initialized with a set of scripts which define the action of a VT100-like

72 EDIT

keyboard with a US English layout. Just like user definitions, these default scripts may be displayed with the SHOW

KEYPRESS (MOUSEPRESS) and SHOW KEYRELEASE (MOUSERELEASE) commands. By default most keys do nothing on
release and have no KEYRELEASE definition, except for the Alt, Ctrl, and Shift keys, and the left mouse button.
Using the “E11.INI” initialization file, the user may easily redefine some or all of the keyboard and/or mouse as
required. The keyscript language is described in Appendix A, and the list of key names that E11 accepts is in
section A.3.

DEFINE LED ledname = flag

Defines which flag is tracked by each keyboard LED. LED names are CAPS, NUM, and SCROLL. The flag may be the
name of any flag (read-only or read/write) from the keyboard script language, in which case the LED turns on
when the flag is set and turns off when the flag is clear. Or it may be NONE to turn the LED off permanently. Flag
names and meanings are described in section A.4.

DEASSIGN ddu:

Disables the specified character or network device. Deassigning TT0: is not allowed (either explicitly, or implicitly
by ASSIGNing its PC device to another PDP-11 device). Unit-number ranges are accepted, to remove multiple
devices with one command.

DEPOSIT [/switches] addr val1 val2 . . .

Deposits the word(s) val1, val2 etc. starting at memory address “addr,” which is forced even. An error message is
returned if an attempt is made to access a nonexistent CSR in the I/O page (bus timeout). The address space to
use is specified by the switch(es), or the space used in the last EXAMINE or DEPOSIT command is used by default if
none are given. See the EXAMINE command for a list of valid switches.

DIRECTORY [d:][path][wildcard]

Displays a list of PC files that match the specified wildcard. The listing pauses at the end of each screen. Typing
“Q” (or CTRL/C) ends the listing, carriage return advances by one line, and any other character advances to the
next screen.

DISMOUNT ddcu:

Dismounts the specified mass storage device (see MOUNT). Unit-number ranges are accepted, to remove multiple
devices with one command.

DUMP [/switches] [d:path\]filename[.PDP] [s1:e1 s2:e2 . . . sn[:[en]]]

With no switches, dumps PDP-11 memory to the specified PC file (default extension is “.PDP”). Any number of
address ranges “si:ei” may be given, and data will be dumped to the file from each range in the order given in the
command line. The last range may have no ending address, in which case file data are dumped until the end of
memory. If no ranges are given at all the default is to dump all of PDP-11 memory starting at 000000.

With either the “/ROM” or “/EEPROM” switch, dumps a range of ROM or EEPROM to the file. The ROM/EEPROM
must have been created with “LOAD/ROM” or “LOAD/EEPROM”. Only one address range may be specified. It must
begin at the beginning of the ROM but may end before the end of the ROM. The “/BANKED” switch can dump all
of a banked ROM if only the starting address is given (rather than dumping only up to the first 512. bytes), in this
case the starting address can be omitted too, (17)773000 is the default for “/ROM” and (17)765000 is the default
for “/EEPROM”. If no ending address is given, the default is to dump out the whole ROM.

EDIT filename

EXAMINE 73

Starts the text editor, for editing files on the host operating system. The keypad commands are a greatly simplified
subset of KED, or of EDT’s “change” mode, so you probably already know how to use them. Press PF2 (normally
mapped to the keypad’s / key) for the “help” screen, which shows what the keypad keys do. CTRL/Z (or GOLD-7)
will bring up a command prompt, which accepts command-line-oriented commands. The most important ones are
EXIT (save file and exit) and QUIT (abandon edits and exit). It’s a fairly bare-bones command set, except for a
few special-purpose commands that might be useful to someone who, for example, is writing a PDP-11 emulator
in 80x86 assembly language.

Highlights of editor commands:

• Keypad: similar to KED or EDT.

• LOCALS: similar to KED, but uses a select range.

• FILL ‘prefix’: same as FILL with no argument, but preserves a prefix string on each line (or adds it if
missing). Useful for rejustifying comment blocks in some programming languages (e.g. “FILL /; /”).

• INSERT filename: insert a file.

• WRITE filename: write the select range to a file.

• APPEND filename: append the select range to a file.

• SET EOL CRLF: uses CR/LF as the end-of-line sequence. Synonym: SET EOL DOS.

• SET EOL LF: uses LF alone as the end-of-line character. Synonym: SET EOL UNIX. Default is auto-detected
from the file read, or from the host OS if creating a new file.

• SET [SOFT]TABS parm: set tab stops etc. for both hard tabs (using the ASCII TAB character) and soft tabs
(which are done using spaces alone). Values for parm:

– OFF: disable [soft] tabs entirely.

– ON: enable [soft] tabs according to last settings used.

– a b c . . . : set tab stops at the specified columns (1 = left margin).

– EVERY n: set tab stops every n columns.

• SET CONTROL parm: set how control characters are displayed:

– LETTER: circumflex and a letter, e.g. ^C for 003.

– SYMBOLIC: (default) symbolic name, e.g. <ETX> for 003.

• ESC o: check to see if the symbol under the cursor is the only occurence of that symbol name in the file.

• ESC r: change the radix of the numeric constant under the cursor, using MASM syntax. Suffixes (also used
in response to prompts for old/new radix) are ‘b’, ‘o’ or ‘q’, ‘d’, or ‘h’ for binary, octal, decimal, or hex.

EXAMINE [/switches] [addr [end]]

Examines memory at address addr. If end is specified then a range of locations is displayed. If both are missing
then the 8 locations following the last location accessed with EXAMINE or DEPOSIT are displayed. An error message
is returned if an attempt is made to access a nonexistent CSR in the I/O page (bus timeout). The address space
to use is specified by the switch(es), or the space used in the last EXAMINE or DEPOSIT or MAP command is used by
default if none are given. The data type is specified by a switch, or the type used in the last EXAMINE or DEPOSIT
command.

Switches:

74 INSTALL

switch space
/CURRENT Current CPU mode, specified by PSW15:14

/PREVIOUS Previous CPU mode, specified by PSW13:12

/KERNEL Kernel mode
/SUPERVISOR Supervisor mode
/USER User mode
/INSTRUCTIONS I space (within one of the above modes)
/DATA D space (within one of the above modes)
/PHYSICAL Physical 22-bit address space (default if MMU disabled)

switch data type
/BYTES 8-bit bytes (with ASCII equivalent)
/LONGWORDS 32-bit longwords
/QUADWORDS 64-bit quadwords
/WORDS 16-bit words (default)

Note that the switch(es), if any, must be given before the address expression on the command line, to avoid
ambiguity since the switch character (“/”) is used for division in expressions.

FPREGISTER [r v1 v2 [v3 v4]]

Sets or displays the FPP registers. r is the FP accumulator number, 0–5, and v1–v4 are two or four 16-bit octal
words to write in the register (sorry, not decimal). If no arguments are given then the octal contents of all six ACs
are given, along with octal displays of the FPS, FEC, and FEA, and also a bit-by-bit display of FPS.

GO [addr]

Starts the machine at the specified address, or at the address currently in the program counter if none is given.

HALT

If the machine is running, halts it and displays the registers. Otherwise a no op.

HELP [command]

Explains use of Ersatz-11 commands. Just type “HELP” for a list.

HISTOGRAM [option]

Displays/clears the histogram of PDP-11 opcode usage which is maintained whenever SET HISTOGRAM ON is in
effect. HISTOGRAM CLEAR resets the table to all zeros. HISTOGRAM SAVE [d:path\]filename[.TXT] save the entire
table of 65536 percentages (of each opcode’s popularity as a percentage of the entire instruction mix) into a text
file. HISTOGRAM SHOW shows the percentage for an opcode (e.g. “240”) or range of opcodes (e.g. “10000–17777”).
More than one opcode (or range of opcodes) may be given.

INITIALIZE

Initializes all emulated I/O devices, disables the MMU, sets the CPU mode to “kernel.”

INSTALL [d:path\]filename[.DLL]

Installs a user-written dynamic link library to add a custom device emulation to Ersatz-11. Files must be in the
Win32-style “portable executable” format (which can be generated with standard software development tools) and

KERMIT 75

may be written in assembly language and/or C.

E11 also supports 16-bit modules in the Win16-style “new executable” format, for backwards compatibility with
modules written for segmented versions of E11 (before V4.0), when running on host systems which support memory
segmentation.

Loadable emulation module support is an extremely powerful feature of Ersatz-11, since it allows custom device
emulations to be added which can coexist with the standard emulated devices, bus adapters, and other loaded
emulation modules, without requiring access to Ersatz-11’s source or linkable object files. E11 provides an API
which modules can call to access the PDP-11 memory and interrupt system, and to arrange to be called when the
PDP-11 wants to access an I/O page location controlled by the loaded module. E11 also provides entry points to
do simple memory allocation, as well as hardware interrupt and memory window management. In many cases this
makes it possible for the loaded module to be completely unaware of the host operating system under which E11
is running.

KERMIT

Brings up a Kermit client, for performing file transfers over the virtual serial line between the console terminal
and the emulated PDP-11, as if the console were a free-standing terminal program on a PC connected to a real
PDP-11. This client should be generally familiar to anyone who’s used a typical Kermit program. It’s somewhat
bare-bones in terms of command-line features, but the protocol implementation is thorough and includes sliding
windows and long packets. Kermit may be useful as a last-ditch method of file transfer, for systems where direct
insertion/extraction of files into/from the disk image(s) is not practical, and no driver is available for the host file
access device (DO:).

CD dir (or CWD) Change PC directory.

CONNECT (or blank line) Connect to PDP-11 in pass-through mode.

FINISH Shut down Kermit server on PDP-11.

GET filespec [pcfilespec] Receive file(s) from PDP-11 (with optional renaming).

HELP [command] Display help information on Kermit commands.

RECEIVE [pcfile] Receive (and optionally rename) file from PDP-11.

REMOTE CD dir (or CWD) Change PDP-11 directory.

REMOTE DIRECTORY [filespec] Display a directory of PDP-11 files.

REMOTE KERMIT cmd Execute arbitrary command on server.

REMOTE SET FILE TYPE BINARY Sets both client and server to transfer files in raw mode (all bytes unchanged).

REMOTE SET FILE TYPE TEXT Sets both client and server to transfer files in text mode (line endings/lengths may
be converted as needed).

REMOTE SPACE [filespec] Show disk allocation.

SEND pcfile [pdp11file] Send (and optionally rename) file(s) to PDP-11. If pcfile is a wildcard, pdp11file
replaces only the first matching name; other wildcard matches are sent with their
real names.

LOGOUT (or BYE) Shut down Kermit server on PDP-11 and log out.

QUIT (or EXIT) End use of Kermit client.

SET BLOCK-CHECK n Set block check type to 1, 2, or 3 (meaning a 1- or 2-byte additive checksum, or a
3-byte CRC).

SET FILE NAMES CONVERTED Transmitted filenames will be normalized to remove possibly controversial char-
acters.

SET FILE NAMES LITERAL Transmitted filenames will be in native format of host PC OS.

76 LOG

SET FILE TYPE BINARY Set client to transfer files in binary mode (you probably also want REM K SET

FILE TYPE BINARY, unless the server is new enough to understand REM SET FILE

TYPE BINARY, which sets both the client and server at once).

SET FILE TYPE TEXT Set client to transfer files in text mode (also use REM SET FILE TYPE TEXT or REM
K SET FILE TYPE TEXT).

SET TRANSMIT PAUSE n Add an n-millisecond delay after each CR character sent with the TRANSMIT com-
mand. This will likely be needed to prevent overruns, since TRANSMIT doesn’t use
flow control.

TRANSMIT pcfile Send text file directly, with no Kermit protocol. SET TRANSMIT PAUSE n may be
used to add an n-millisecond delay after each CR character sent.

LIST [/switches] [addr]

Disassembles eight instructions starting at the specified address if it is given, or otherwise at the first address
following the last one disassembled by the most recent LIST or REGISTER command. The address space to use is
specified by the switch(es), or the space from the last LIST command is used if none are given. The default for
LIST is set to /CURRENT /INSTRUCTIONS after each register dump, either from a REGISTER command or from the
register display from a STEP command or CPU halt. See the EXAMINE command for a list of valid switches.

LOAD [/switches] [d:path\]filename[.PDP] [s1:e1 s2:e2 . . . sn[:[en]]]

With no switches, loads the specified PC file into PDP-11 memory (default extension is “.PDP”). Any number of
address ranges “si:ei” may be given, and data from the file will be loaded into each range in the order given in the
command line. The last range may have no ending address, in which case file data are loaded until end of file is
reached. If no ranges are given at all the default is to load the file at 000000. This command may be useful with
binary files produced by Strobe Data Inc.’s PDPXASM cross-assembler.

With either the “/ROM” or “/EEPROM” switch, creates a ROM/EEPROM page and loads its contents from the file.
The ROM contains a linear copy of the file contents, unless the “/BANKED” switch is also given, in which case
it is banked through a 512.-byte window at either (17)773000 or (17)765000, using the page control register (see
the “PCR” option under SET CPU). Only one address range may be given. If “/BANKED” switch is specified, the
address range must be exactly 512. bytes long and must begin at one of the addresses given above. If “/EEPROM”
is specified, the starting address must be (17)765000, so this address will be used by default, otherwise (17)773000
is the default. Otherwise, if only the starting address is given, the size of the ROM depends on the size of the file.
If an ending address is given, the file must be large enough to fill that address range.

LOG ddcu: [[d:path\]filename[.LOG]] [switches]

Logs the activity of the specified PDP-11 device to a file. The default filename extension is “.LOG”. For character
devices, all output sent to that device is logged. For all others, commands sent to the device are logged to the
file, with a timestamp on each one. If no filename is specified, any existing log file for that device is closed. The
available switches are as follows:

/APPEND appends to an existing log file, rather than replacing it.

/LAST:n limits the log file to only the last n lines of log data (or possibly fewer, if that many lines won’t
fit in the internal buffer).

/NOBUFFERING disables multi-line buffering so that the internal log buffer is flushed to the file after each
line-feed character. This causes increased disk activity (especially when combined with /LAST) but can
be useful in diagnosing a crash.

/NOTIMESTAMPS omits the timestamps on each command. This can be useful when using a file-compare
utility on log files from two runs to look for differences. This switch has no effect on character devices,
since they never log timestamps.

MAP 77

/PC includes the value of the PDP-11 program counter when the command was initiated.

LOG ddcu: [[d:path\]filename[.LOG]] [switches]
(where dd is LP, TT, YC, YG, YH, YV, or YZ.)

Logs all output to the specified character device in the specified file.

LOG ddcu: [[d:path\]filename[.LOG]] [switches]
(where dd is CT, DB/DR, DC, DF, DK, DL, DM, DO, DP, DS, DT, DU, DX, DY, HD, II, IX, KD, KG, KP, MM, MR, MS, MT, MU, PD,
or XU.)

Logs commands sent to the TA11, RMxx/RPxx, RC11, RF11, RK11D, RL11, RK611, host file device, RP11C,
RS03/04, TC11, MSCP controller, RX11, RX211, HD SYS.EXE pseudo-controller, DIP11A, IEU11A, M8644,
KG11A, KW11P, TM03, TS11, TM11, or TMSCP controller, RXT11, or DU11 to the specified file. The unit
number is insignificant (except for Massbus devices, which effectively have separate controllers for each unit); all
commands to the controller are logged regardless of the currently selected unit.

LOG XEn: [[d:path\]filename[.LOG]] [switches]
LOG XHn: [[d:path\]filename[.LOG]] [switches]
LOG NIn: [[d:path\]filename[.LOG]] [switches]

Controls logging of Ethernet events. If a filename is specified then the log file is opened. These devices support
additional switches specifying which events are to be logged. “/[NO]COMMANDS” controls logging of port commands,
“/[NO]RECEIVE” controls logging of received frames, and “/[NO]TRANSMIT” controls logging of transmitted frames.
The switches may be specified when the log file is first opened, or later in LOG commands with the filename
parameter missing to change what is being logged without having to open a new log file. If neither the filename
nor any switches are specified, any existing log file for that device is closed. If no switches are specified when the
file is first opened, the default is “/RECEIVE /TRANSMIT”.

MAP [/switches] addr

Displays the physical address corresponding to the specified virtual address. The switches to specify the virtual
address space are the same as the ones used with the EXAMINE command.

MOUNT pdp11dev: [pdp11switches] pcdev [pdp11switches and/or pcswitches]

Mounts a PC file or device as the specified PDP-11 block device. The PDP-11 disk/tape controller of the appropriate
type is created if it did not already exist.

pdp11dev is the name of the PDP-11 device name being created. It conforms to the syntax defined in section 1.8.
The first two letters define the controller type, and are generally the same as the PDP-11 operating system’s name
for that device.

pcdev is the name of the PC device or filename to be used to emulate this particular PDP-11 drive. The possible
names are described in chapters 4 and 5.

Switches specific to the controller type may appear either after the PDP-11 device name or after the PC device
(or file) name, and are typically used to specify the drive type in case the controller supports more than one drive
type. If no drive type switch is specified, the default type is usually based on the size of the PC device. All
emulated controller types support the “/RO[NLY]” (syn. “/WP[ROTECT]”) switch, which has the same pressing the
WRITE PROT (etc.) button on a real drive, and works even in cases like the RX01 where the real hardware had no
write protection facility. A “/RW” switch exists for completeness and allows read/write access to the device, which
is the default behavior. See chapters 4 and 5 for more information.

78 SET BREAK

Just like ASSIGN, MOUNT commands also work with a range of unit numbers in pdp11dev. If the PDP-11 device
name ends with a low–high range of unit numbers (i.e. two numbers separated by a hyphen), every unit in that
range is created at once. Again, pcdev should have only the unit number of the first unit in the range, for devices
where that makes sense, and the number will be incremented automatically for every device (or filename) in the
range. For devices that don’t have unit numbers, like “RAM:” and “NULL:”, all the units come out the same.

POWERFAIL

Simulates a power failure, by causing an immediate trap through vector 24.

PRIMARY n

Switches the session number (in the range 1–12) being displayed on the primary (or only) video monitor. This
command is equivalent to pressing Alt-Fn on the keyboard, except that it may be issued from an initialization file
or serial console without requiring that key combination to be typed manually on the PC keyboard.

PROCEED [break]

Continues PDP-11 execution at the address currently in the program counter. If “break” is specified, then it is
the virtual address of a single hard breakpoint, where the PDP-11 is guaranteed to stop if an instruction fetch is
attempted starting at that address, regardless of what mode the computer is executing in, and regardless of whether
the contents of that location have changed since the breakpoint was set. This can be handy for tracing code that
hasn’t been loaded yet. Note that hard breakpoints and single stepping with the STEP command interfere with
the operation of the PDP-11 T bit, so don’t combine them with a debugger (or CPU traps diagnostic program)
running on the PDP-11 or you’ll get strange behavior.

QUIT

Exit the simulator, closing all image and log files and resetting all devices that were in use.

REGISTER [r val]
reg=val
flag=val

If “r” and “val” are given, sets register “r” (0–7) in the current register set to contain “val.” Otherwise displays
the values of all eight registers, the condition codes, the current and previous processor modes, and the current
interrupt priority level. Registers and condition code flags may also be set by typing the register name, an equals
sign, and the new value at the command prompt. Any expression that works with CALCULATE is valid in this case,
so for example one may type “PC=PC-2.” The CPU priority may be set in the same way using “PRIO= val”, where
val is from 0 to 7. Also the current mode and previous mode may be set with “CM=x” and “PM=x”, where x is K, S,
or U for kernel, supervisor, or user mode. Or the entire processor status word may be set at once with “PS=xxxxxx”.

SECONDARY n

Switches the session number (in the range 1–12) being displayed on the secondary video monitor (if any). This
command is equivalent to pressing Ctrl-Fn on the keyboard, except that it may be issued from an initialization file
or serial console without requiring that key combination to be typed manually on the PC keyboard.

SET BREAK {nnn | NONE}

Sets the octal value of an ASCII character that can be used in place of a serial BREAK signal to pop up an E11
prompt. For example, “SET BREAK 020” will cause any CTRL/P character typed on TT0: to bring up an E11
prompt. The default value is “NONE”, meaning that all ASCII characters are passed through and only a serial
BREAK, or a keyscript PROMPT command, will bring up the prompt. This command is intended for use in cases

SET CLOCK 79

where the console (TT0:) has been ASSIGNed to a real serial port, connected to a terminal (or terminal program)
that has difficulty generating BREAK signals.

SET CLOCK 14318nnn

Informs E11 of the actual frequency (in Hertz, as a decimal number) of the PC motherboard’s 14.318 MHz system
clock used to derive the 50/60 Hz clock, among other things. This frequency is supposed to be 14318180 Hz (which
is what E11 assumes by default), but if your PDP-11 OS’s clock gains or loses time at this setting due to the
oscillator frequency being slightly off, you can use SET CLOCK to make slight changes, and E11 will adjust its
math accordingly. The correct value can be determined experimentally, or measured using test equipment (this
would require a very accurate frequency counter to be useful though). Setting values wildly different from 14318180
may produce unexpected results.

SET CPU item [item . . .]

This command changes the emulated CPU type, either by changing to a new model all at once, or on a feature-
by-feature basis. Each keyword enables a particular feature, or disables it if preceded by “NO”. Any number of
keywords may be specified in one line, and they are applied left to right. For example, “SET CPU 44 NOFPP” will
create a PDP-11/44 and then delete its floating point processor. This gives you the ability to roll your own CPU,
which need not correspond to any actual existing PDP-11 model. Changing the CPU’s type while it is running will
work but is likely to crash the PDP-11 operating system under some cases. SHOW CPU displays the current settings
of all options.

E11 does not really emulate cache memory, since that would greatly slow down emulation rather than speeding it
up. Maintenance features such as “write wrong parity” are not emulated either, since again they would needlessly
add huge overhead and anyway since the data paths being tested by these modes are all different on a PC, PDP-11
diagnostic software would not gain any useful information by exercising them. So for these cases E11’s emulation
is limited to creating the appropriate registers in the I/O page so software can read and write them without losing
data or receiving unexpected bus timeout errors. Note that if RSTS/E sees a parity CSR or KTJ11B maintenance
CSRs it attempts to exercise them, giving a fatal error if they do not work. To avoid this problem, the CPU
configuration given by SET CPU 94 has NOKTJ11B and NOPARCSR by default as a workaround. These CSRs may still
be enabled for software that needs them with SET CPU 94 KTJ11B PARCSR, however both RT-11 and RSX11M+
will work with the default setting.

SET CPU options:

number Set all CPU options to match PDP-11/number model. Recognized values are 03, 04, 05
(syn. 10), 15 (syn. 20), 23, 24, 34, 35 (syn. 40), 44, 45 (syn. 50 or 55), 53, 60, 70, 73, 74,
83, 84, 93, 94.

ASH31 J11 CPU bug with 31-bit shifts using ASH/ASHC.
ASR KDJ11E additional status register (TOY clock etc.).
CB Cache bypass bit in Unibus map registers.

CCR Cache control register (at (17)777746).
CD Cache disable bit in PDRs.

CDR[=n] KDJ11x configuration/display register (at (17)777524), n is 8-bit DIP switch value.
CHR Cache hit register (at (17)777752).

CHRNZ If CHR is present, reads as non-zero.
CMDR PDP-11/44 cache memory data register (at (17)777754).

CPUERR CPU error register.
CSM CSM instruction (requires SUPMODE to work).

DESTFIRST Evaluate destination operand first in dual operand instructions with mode 0 source. Effect
is to use incremented/decremented value of register as source with mode 2–5 destination
using same register, or PC+2 for mode 07 source and mode 67 or 77 destination.

DSPACE Split I/D space.

80 SET CPU

DUALREGSET Dual register set.
EAE KE11A/B Extended Arithmetic Element.
EIS Extended (integer) Instruction Set.

EIS16 EIS instructions with odd destination set condition codes based on 16-bit result.
FIS Floating Instruction Set (FIS option for PDP-11/35,40 and LSI-11).
FPA Floating point accelerator, sets KDJ11x MR bit indicating FPJ11 present.

FPBACKOUT J-11 SR1 behavior, autoinc/dec is always undone on aborted FPP instruction.
FPP FP11 floating-point instruction set.

HALT4 HALT in user mode traps to 4 instead of 10.
IOPAGE4 I/O page is only 4 KB with MMU disabled (for PDT-11s).

JMP4 JMP Rn or JSR Rn traps to 4 instead of 10.
JMPPLUS2 JMP (R)+ and JSR X,(R)+ jump to incremented value of R (R+2).
KTJ11B KTJ11B Unibus adapter maintenance registers.

LDUB PDP-11/60 LDUB instruction (load microbreak register), as no-op.
LKS LKS clock status register (at (17)777546).
LKS7 Bit 7 (monitor) of LKS clock status register is mechanized.

LOCKASRB ASRB instruction uses interlocked memory access.
MARK MARK instruction.
MAS PDP-11/60 MAS instruction (maintenance alignment shift), as no-op.
MBR PDP-11/70 microprogram break register (at (17)777770).
MED PDP-11/60 MED instruction (maintenance examine/deposit), as no-op.

MFPT[=n] MFPT instruction (returns n in R0).
MNS PDP-11/60 MNS instruction (maintenance normalization shift), as no-op.
MPP PDP-11/60 MPP instruction (maintenance partial product), as no-op.
MSEA Memory system error address register (at (17)777740/2).
MSER Memory system error register (at (17)777744).

MMTRAPS PDP-11/45,55,70-style memory management traps, 3-bit ACF.
MMU Memory management unit, MFPD/MFPI/MTPD/MTPI instructions.

MMU22 22-bit MMU (must use UMAP too if emulating Unibus CPU).
MR[=n] Maintenance register (at (17)777750). If n<16., KDJ11x-style maintenance register which

reads n as model code in bits 7:4. If n=44, PDP-11/44 style MR, and if n=70, PDP-11/70
style MR.

MXPS MFPS, MTPS instructions.
ODD Odd address trapping.

PARCSR Parity/ECC memory CSR address (at (17)772100).
PCR[=x] KDF11/BDV11 page control register and read/write register if x=“KDF11”, or KDJ11

CSR/page control register if x=“KDJ11” (at (17)777520/2).
PDRA Working “A” bit (bit 7) in MMU PDRs. PDP-11/45,50,55 and PDP-11/70 only.
PDRW Working “W” bit (bit 6) in MMU PDRs. All PDP-11 MMUs have this bit, but if the

PDP-11 operating system doesn’t need it, disabling it may yield a small improvement in
emulation speed.

PIRQ PDP-11/45-style 7-level software interrupts.
PRIO Multiple interrupt priority levels (as opposed to the PDP-11/03’s single level).

PSWIO PSW accessible from I/O space (at (17)777776).
QBUS Q-bus exists (otherwise Unibus). Affects default models and default interrupt priorities of

many emulated peripherals.
RTIRTT RTI instruction works like RTT (early CPUs).

RTT RTT instruction.
SIZE PDP-11/70 system size registers (at (17)777760/2).

SOBSXT SOB, SXT instructions.
SPL SPL instruction.
SR Switch register/display register (at (17)777570).

SR1 MMU status register 1.
STACKLIM PDP-11/70 stack limit register (at (17)777774).

SET DELAY 81

SUPMODE Supervisor mode.
SWABV SWAB instruction preserves V bit.

SYSID[=n] PDP-11/70 system ID register (at (17)777764), returns n when read.
TSTSET J-11 TSTSET, WRTLCK instructions.

UMAP Unibus map (maps 18-bit I/O bus to 22-bit memory).
UNDOAUTO Undo mode 2/3 autoincrements on bus error etc.

UPCSR PDT-11 USART parameter CSR (at (17)777420).
USERMODE User mode (or anything besides kernel mode).

UWIN Unibus appears in address window at 17000000.
XOR XOR instruction.

SET DELAY device c1:n1 c2:n2 . . .
SET DELAY device *:n

Sets the number of instructions that the specified command opcodes appear to take to complete on the indicated
device. The device may be DELQA, DELUA, DL11, HOSTFILE (the host file access pseudo-device), KW11L, LP11, PC11,
RC11, RF11, RK11D, RK611, RL11, RM02/03/05/80/RP07 (synonyms), RP04/05/06 (synonyms), RP11C, RS03 or RS04
(synonyms), RX11 or RX211 (synonyms), TA11, TC11, TM03, TM11, or TS11. There may be an arbitrary number of
parameters of the form “c:n” or “c=n”, where c is the octal opcode for the command (or “*” for all commands
for this device) and n is the decimal number of PDP-11 instructions to delay before signaling completion of the
command.

The reason that device commands, such as “read sector” on an RX02, or “transmit character” on a DL11, delay
signaling completion (by raising a “ready” flag and/or triggering an interrupt) instead of completing right away
(which would seem natural in an emulator) is that some OS software contains assumptions that at least a certain
number of instructions are guaranteed to be executed before a device is able to interrupt, even when interrupts
from that device are enabled. The default interrupt delays are set for the “worst case”, so that each one is long
enough to avoid any known (or suspected) problems with DEC OS software. The SET DELAY command may be
useful in cases where your OS needs a longer delay than the default, or in cases where your OS’s treatment of a
device is “clean” and you can gain a noticeable I/O speed increase by setting all the delays for that device to 1, or
in cases where you’re debugging OS software and want to test against variety of interrupt rates.

Note that some devices don’t have numbered command opcodes per se, but the SET DELAY command syntax
requires one anyway for consistency, and pseudo opcode numbers are assigned if necessary. On DL11 SLUs, opcode
“0” refers to the delay between reading a character from the receiver buffer, and getting the interrupt for the next
character (only if it’s the second or later character of a function key sequence on an emulated VT100, all other
keyboard interrupts correspond to actual asynchronous events). Opcode “1” refers to the delay between writing a
character to the transmitter buffer, and getting the completion interrupt (for emulated VT100s — COM and LPT
ports use real completion interrupts). Similarly, PC11 opcode “0” refers to how long it takes to read a character
from paper tape, and opcode “1” refers to how long it takes to write one. An LP11 has only one opcode, which is
“0” and corresponds to the same thing as opcode “1” of a DL11. An RK611 has only opcodes 0–17, but the SET

DELAY command defines an opcode “20” which refers to the delay between the interrupt that acknowledges reception
of a head movement command (which is itself delayed), and the “attention” interrupt which signals completion
of the head movement. The RK11D emulation has a similar dummy opcode “10” which means the same thing,
and the TA11 emulation has a dummy opcode “10” which defines the delay between character interrupts within
a block. A KW11L has no opcodes, so opcode “0” sets the delay between simulated interrupts which are used to
catch up if clock interrupts are missed due to native PC file I/O taking more than 16.67 ms (or 20 ms in 50 Hz
clock mode) to complete.

SET DISPLAY NONE

SET DISPLAY digitalI/Odevice:

If the name of a digital I/O device is given, the display register is sent to its primary 16-bit output port.

82 SET POWERFAIL

If NONE is specified, then the current DR value is available only from the SHOW DISPLAY command (the default
condition).

SET DISPLAY {DR | BDR | R0 | PC}

Selects which CPU register is displayed on a hardware LED display register (attached to a digital I/O device).
By default the DR is displayed (i.e. the last word written to (17)777570), but the BDR (boot/diagnostic display
register, i.e. the last byte written to (17)777524), or R0 or the PC may be selected instead, since the null jobs in
some operating systems display a pattern in R0 (and the PC in some cases) during a WAIT instruction. The pattern
may be used to get a rough idea of system load, and the R0/WAIT method is a standard way to display a number
on the PDP-11/70, which has no display register address. For completeness, registers R1–R5 or SP may be selected
too.

SET HERTZ {50 | 60}
SET HZ {50 | 60}

Sets the frequency of the KW11L line clock (startup default is 60).

SET HISTOGRAM {ON | OFF}

Enables/disables maintaining a histogram of PDP-11 opcode usage. See the HISTOGRAM command for details.

SET IDLE [DELAY=n] [[NO]RELEASE]

Sets the behavior when the emulated CPU is idle, i.e. halted or executing a WAIT instruction. RELEASE means to
ask the host OS to release the current time slice. This way E11 won’t hog 100% of the host CPU’s time for no
reason. However, in OS/2’s DOS box this is taken as a sign that E11 will be idle for some time so its priority gets
reduced as a result, so this option should not be used in OS/2. NORELEASE means E11 should just keep looping
until there’s something for it to do. DELAY=n causes a n-millisecond delay each time there’s nothing else to do,
which reduces the load on the PC operating system at the expense of increased response time.

SET KEYBOARD [NO]SWAP

SWAP sets the keyboard handler to exchange the functions of the Caps Lock and left Ctrl keys for people who
don’t like the IBM Enhanced Keyboard. NOSWAP sets the handler back so that the keys work as marked. The
swap is made upstream of the keyscript interpreter, so CAPSLOCK and LCTRL execute each other’s KEYPRESS and
KEYRELEASE scripts when the keys are swapped.

SET MEMORY nnnn

Sets the size of emulated PDP-11 memory. nnnn is the number of kilobytes of memory, anything from 8 up to 4088
(or the limit specified by the /MEMORY:n switch when E11 was started).

SET PCLOG {ON | OFF | n}

Enables or disables logging of the PC (program counter) register’s value before each PDP-11 instruction fetch, at
a slight speed penalty. Used for debugging PDP-11 code. By default, the last 64 fetches are logged. SET PCLOG n
enlarges this to any power of two that will fit in available memory (and implies SET PCLOG ON too). SHOW PCLOG

displays the logged values.

SET POWERFAIL [FILE=[d:path\]filename[.PDP]] [INTERVAL=n [NOFILE]

Controls an experimental (unsupported) power failure feature. If a filename has been set, the QUIT command is

SET SCOPE 83

modified to simulate a power failure (by trapping through vector 24), allowing the CPU to execute up to n more
instructions, and then dump core to that file. Using QUIT /NOSAVE to exit overrides this feature. SET POWERFAIL

NOFILE disables the current file setting. SHOW POWERFAIL shows the settings.

SET [NO]SCOPE

Sets whether the console terminal is a scope or a hardcopy terminal, for the purpose of handling rubout characters
typed at the “E11>” prompt. Mainly useful if the console is redirected to a COM port with a DECwriter (etc.)
plugged into it. Also determines whether typing ˆL at the command prompt will attempt to clear the screen.

SET SWITCH n

Sets the value of the emulated switch register to n, as an expression with the same syntax as used by the CALCULATE
command.

If a digital I/O device has been connected to the display register with SET DISPLAY digitalI/Odevice:, its input
port is used to read the switch register value.

SET THROTTLE [ON] [OFF] [DELAY=usec] [FILE=[d:path\]filename[.TAP]] [INTERVAL=insts]

Enables or disables a throttle which can slow down the average emulated CPU speed in a fairly predictable way,
for compatibility with PDP-11 software which contains timing loops which are tuned for a particular PDP-11 CPU
model. Timing is approximate, due to the added overhead of accessing the PC’s clock hardware so often, but it
should still be possible to get close.

The throttling is done by inserting delays at regular intervals during simulation of PDP-11 instructions.

DELAY=usec sets the length of this delay to a fixed value of approximately usec microseconds.

FILE=filename loads a table of 65,536 little-endian binary 32-bit values (from a 262,144-byte file), each of which
is the number of nanoseconds that the corresponding PDP-11 opcode should take to execute, given in order from
000000 to 177777 octal. Entries with values above 50,000 are currently not allowed and produce a “value out of
range” error message.

INTERVAL=insts sets the number of PDP-11 instructions that will be executed between delays.

So every insts instruction fetches, there will be a fixed delay of about usec microseconds (if DELAY was used), or a
delay computed to bring the total amount of real time that the previous insts instructions took to execute up to
the sum of those opcodes’ entries in the table (if FILE was used).

The ON keyword turns throttling on. Throttling is also turned on implicitly when the DELAY=usec and/or
INTERVAL=insts parameter(s) is/are given.

The OFF keyword turns throttling off, and allows PDP-11 instruction emulation to proceed at the maximum possible
speed. This is the default setting.

SET pcdevcu: . . .

Sets parameters for the specified PC device, with the optional controller letter and/or line number given using
the usual device name syntax, see section 1.8. SET commands for real PC devices must be issued before the first
ASSIGN or MOUNT command which uses that PC device. The PC device names are the same as those used on the
right hand side of an ASSIGN or MOUNT command.

The rest of the command line consists of keywords appropriate to that device type. The valid SET parameters for

84 SET pdp11dev

each PC device type are listed in the section that describes that device. Multiple keywords may be specified on
the same SET command, they will be processed in left-to-right order.

SET ddcu: . . .

Sets parameters for the specified PDP-11 device. Possible parameters are as follows:

BOOT=option Selects whether incoming MOP boot frames will be honored. Specifies either the BOOT

command parameters, or DISABLED (default) to disable network-initiated booting.

CSR=nnnnnn Sets the base CSR address to nnnnnn octal.

CSR=DEFAULT Sets the base CSR address back to the default address for this device (useful if it had
been changed with an earlier SET command). SHOW commands will display “(D)” after an
address which was chosen using DEFAULT.

CSR=FLOATING Sets the base CSR address according to the PDP-11 floating CSR rules, for devices that
support this scheme. CSR addresses for all floating devices are recomputed every time the
device configuration is changed. SHOW commands will display “(F)” after an address that
was chosen using FLOATING.

ctrltype Set controller type. This is mainly used to distinguish between Unibus and Q-bus versions
of controllers, which differ in number of address bits used and whether they go through
the Unibus map, and in some cases in other ways as well. DEFAULT means to choose a
default controller type based on whether SET CPU QBUS is in effect. SHOW commands will
display “(D)” after a controller type which was chosen using DEFAULT.

DS/SS Sets the disk to be single-sided or double-sided. Real RX211s autodetect this but 3.5” and
5.25” disks don’t have a separate index hole for DS disks, so the number of sides must be
set explicitly.

MODE Sets the mode parameters for the specified port using a syntax similar to the DOS MODE
command. The four parameters “bps,par,dbits,sbits” set the decimal number of bits per
second (which unlike DOS MODE, may not be abbreviated, so “96” really means 96 baud
not 9600), a single letter indicating the parity (“E” for even, “O” for odd, “N” for none,
“M” for mark, “S” for space), a decimal number of data bits (5–8), and a decimal number
of stop bits (1–2). This is mainly useful for DL11 type ports where the communications
parameters are not set by software, for mux ports any parameters set with SET MODE will
be overridden by the values written to the mux by the driver in the PDP-11 OS, unless
they are locked with the LOCK option. Note that the set of valid baud rate values depends
on the hardware emulating that port. If the value specified is not available E11 will use
the closest rate the device supports.

PRIORITY=n Sets the interrupt priority to n (4–7).

PRIORITY=DEFAULT Sets the interrupt priority to DEC’s default value for this controller type. In many cases,
the original Unibus version of a controller uses priority 5, but the Q-bus equivalent uses
priority 4, since early LSI-11 CPUs didn’t have a multi-level priority system. When set
to DEFAULT, the priority will normally be automatically reduced to 4 when emulating a
Q-bus CPU. This is true even on devices which were available from dDEC only for Unibus,
since there may have been aftermarket Q-bus versions which used priority 4.

READONLY Write-protect a disk or tape unit.

READWRITE Write-enable a disk or tape unit.

REWIND Rewind the paper tape, or card deck, so that subsequent input will start over at the
beginning of the file.

RH11 Sets this Massbus adapter (specified by controller letter; unit number is unimportant) to
be an RH11. 18-bit addressing, goes through Unibus map if one is configured with SET

CPU UMAP.

SHOW ASYNCPORTS 85

RH70 Sets this Massbus adapter to be an RH70. 22-bit absolute addressing, RHBAE/RHCS3
registers exist.

VECTOR=nnn Sets the base vector address to nnn octal.

VECTOR=DEFAULT Sets the base vector address back to the default address for this device (useful if it had
been changed with an earlier SET command). SHOW commands will display “(D)” after an
address which was chosen using DEFAULT.

VECTOR=FLOATING Sets the base vector address according to the PDP-11 floating vector rules, for devices that
support this scheme. Vector addresses for all floating devices are recomputed every time
the device configuration is changed. SHOW commands will display “(F)” after an address
that was chosen using FLOATING.

SHOW ASYNCPORTS

Lists the asynchronous serial ports that have been detected on this system, and the host-OS-independent nicknames
that may be used to access them with ASSIGN commands. The last entry is always NULL:, to ensure that there’s
always at least one valid ASYNCn: unit.

SHOW BDR

Shows the current value of the boot/diagnostic display register (last value written to (17)777524).

SHOW BREAK

Shows the octal ASCII value of the character that can be used in place of a serial BREAK signal to bring up the
E11 prompt. The default is NONE, meaning that only a genuine serial BREAK signal, or PROMPT keyscript
command (normally generated with Shift/Enter), will bring up the prompt, and all ASCII characters are passed
through.

SHOW CLOCK

Shows the current assumed frequency (in Hz) of the PC motherboard’s 14.318 MHz clock, used to generate the
KW11L/KW11P 50/60 Hz clock.

SHOW CPU

Shows emulated CPU type, number of emulated CPUs if greater than one, and emulated core size, along with
breakdown of features, as well as the CPU type of the host processor.

SHOW CSR addr

Shows the name of the device register at the specified octal I/O page address.

SHOW DELAY device

Shows the currently active list of interrupt delay counts for the specified device, starting with the delay for opcode
number 0. See SET DELAY for details.

SHOW DEVICES

Displays a list of all emulated PDP-11 devices in the current configuration.

SHOW DIGPORTS

86 SHOW PCLOG

Lists the digital I/O ports that have been detected on this system, and the host-OS-independent nicknames that
may be used to access them with ASSIGN OA: or ASSIGN XA: commands. The last entry is always NULL:, to ensure
that there’s always at least one valid DIGn: unit.

SHOW DISPLAY

Shows the current value of the display register (last value written to (17)777570).

SHOW GPIBPORTS

Lists the GPIB (IEEE-488 instrument bus) ports that have been detected on this system, and the host-OS-
independent nicknames that may be used to access them with ASSIGN IX: commands. The last entry is always
NULL:, to ensure that there’s always at least one valid GPIBn: unit. Actually, for the time being, NULL: is the only

GPIB device.

SHOW HERTZ

SHOW HZ

Shows the current frequency, in Hz, of the emulated KW11L line clock. The default is 60.

SHOW IDLE

Shows the SET IDLE setting, either RELEASE (release the host CPU when idle) or NORELEASE (keep polling until
there is something to do).

SHOW KEYPRESS keyname
SHOW KEYRELEASE keyname

Shows the keyscript currently bound to the keypress or keyrelease event for the specified key, if one is defined. See
section A.3 for key names.

SHOW LED ledname

Shows the name of the flag (from the keyboard script language) whose value is being tracked by the specified LED,
or “NONE” if the LED has been disabled. LED names are CAPS, NUM, and SCROLL. See section A.4 for a list of flag
names.

SHOW MEMORY

Shows the amount of PC memory used by Ersatz-11, how much of that memory is emulated PDP-11 memory, and
how much PC memory is free. Free memory must be available in order to use the ASSIGN, DEFINE KEYPRESS, LOG,
or MOUNT commands.

SHOW MMU [{KERNEL | SUPERVISOR | USER} [INSTRUCTION | DATA]]

Shows the current mapping registers for the specified space. Defaults are KERNEL and INSTRUCTION space.

SHOW MOUSEPRESS keyname
SHOW MOUSERELEASE keyname

Shows the keyscript currently bound to the press or release event for the specified mouse button, if one is defined.
See section A.3 for key names.

SHOW PCLOG

SHOW PRINTERPORTS 87

Shows the log of PC (program counter) values from the last 64 PDP-11 instruction fetches, if enabled with SET

PCLOG ON (or more, if enabled with SET PCLOG n). Used for debugging PDP-11 code.

SHOW PRINTERPORTS

Lists the printer ports that have been detected on this system, and the host-OS-independent nicknames that may
be used to access them with ASSIGN commands. The last entry is always NULL:, to ensure that there’s always at
least one valid PRINTn: unit.

SHOW SYNCPORTS

Lists the synchronous serial ports that have been detected on this system, and the host-OS-independent nicknames
that may be used to access them with ASSIGN commands. The last entry is always NULL:, to ensure that there’s
always at least one valid SYNCn: unit.

SHOW THREADS

Shows a list of all threads currently running in Ersatz-11, and a brief description of each one. This command is
mainly intended as a support aid when contacting D Bit for help.

SHOW THROTTLE

Shows the current status of the emulated CPU speed throttle. See the SET THROTTLE command for more informa-
tion.

SHOW VERSIONS

Shows the version numbers of Ersatz-11, the host operating system, and any other relevant interfaces.

SHOW ddcu:

Shows the configuration of the specified PDP-11 or PC device. The actual data shown are dependent on the device
type, in general the display contains the information that can be SET for that device (e.g. controller type, interrupt
priority, or CSR/vector addresses), and for PDP-11 devices the name of the PC file or device attached with ASSIGN

or MOUNT is shown. Not all devices support SHOW.

Unit-number ranges are accepted in PDP-11 device names, to show multiple devices with one command.

In the output from a SHOW ddcu: command, “(D)” following a controller type or interrupt priority means that pa-
rameter is set to “DEFAULT” and the displayed type or priority is the default based on the “SET CPU [NO]QBUS”
setting. Similarly, “(F)” following a CSR or vector value means that parameter is set to “FLOATING” and the
value given is the one currently in use based on the system configuration.

The default controller types, floating CSR or vector addresses, and default interrupt priorities are assigned specific
values only for controllers that have actually been created with an ASSIGN or MOUNT command. If the controller
does not currently exist then a defaulted controller type or interrupt priority will simply be listed as “DEFAULT”
and floating addresses will be listed as “FLOATING”.

The following PC devices support SHOW: CONn:.

Examples:

88 UNLOAD

Show a simple PDP-11 device:
E11>show tt0:

TT0: CON1:

CSR=777560(D) VECTOR=060(D) PRIORITY=4

Show an auto-configuring unmounted PDP-11 device:
E11>show dl0:

DLA0: NONEXISTENT

DEFAULT CSR=17774400 VECTOR=160 PRIORITY=DEFAULT

Mount the device and show it under a Unibus emulation (PDP-11/70):
E11>mount dl0: \e11\rt11
E11>set cpu 70

E11>show dl0:

DLA0: RL02 READ/WRITE FILE "C:\E11\RT11.DSK"
RL11(D) CSR=17774400(D) VECTOR=160(D) PRIORITY=5(D)

Switch to a Q-bus emulation (PDP-11/93) and show changes:
E11>set cpu 93

E11>show dl0:

DLA0: RL02 READ/WRITE FILE "C:\E11\RT11.DSK"
RLV12(D) CSR=17774400(D) VECTOR=160(D) PRIORITY=4(D)

STEP [count]

Executes the specified number (default=1) of single instruction steps and displays the updated registers after each.
Note that if real time clock interrupts are enabled and the CPU priority is below 6, STEP will immediately enter
the clock interrupt service routine instead of executing the instruction at the current PC. An easy workaround is to
disable clock interrupts with “D 17777546 0” before using STEP, and then reenable them with “D 17777546 100”
before continuing regular execution.

TYPE [d:][path]filename

Types the specified PC text file on the screen. The display pauses at the end of each screen. Typing “Q” (or
CTRL/C) ends the listing, carriage return advances by one line, and any other character advances to the next
screen.

UNLOAD [/switches] [address]

Unloads a ROM or EEPROM page previously loaded with “LOAD”. Either the “/ROM” or “/EEPROM” switch is
required, “/BANKED” may be given to invoke the default starting addresses of (17)773000 for “/ROM” and (17)765000
for “/EEPROM”, otherwise the starting address of the ROM must be given.

Appendix A

Keyboard Script Language

The script language used by E11’s DEFINE KEYPRESS and DEFINE KEYRELEASE commands (and DEFINE MOUSEPRESS

and DEFINE MOUSERELEASE) is powerful, yet very easy to use. Unlike some systems where keys can have only
characters or strings bound to them, and mouse buttons can be reordered but not changed, E11 allows the user to
attach a small script to each key so that more complicated operations can be defined. In particular, there’s nothing
special about the shift keys (Ctrl, Alt, Shift); they can be redefined to be data keys and vice versa.

When defining a new keyscript, it may be helpful to use a SHOW command to display the existing default keyscript
for that key, or a similar one, and use it as the basis for writing the new keyscript. To make the keyboard send a
character or string to the system, simply enclose that character or string in single or double quotes. IF statements
can be used to send different strings depending on the state of a variety of flags (including the current state of the
Alt, Ctrl, and Shift keys).

NONREPEATING and NOREPEATS commands are used in many of the default keyscripts to emulate the autorepeat
behavior of the VT100 keyboard precisely. NONREPEATING tells E11 that this keyscript should not be autorepeated
even if the key is held down (like the VT100 Esc, Tab, and Return keys), and NOREPEATS means that while this key
is pressed, all other keys should be prevented from autorepeating (which is what the VT100 Ctrl key does). There
are numerous other special-purpose commands that allow such things as sending the current date and/or time in a
variety of formats, popping up the E11 command prompt, and switching the video display to show another session.

Multiple statements in a single key definition may be separated by “:” or “\” characters and count as one statement
(for the purposes of the IF/ELSEIF/ELSE/ENDIF construct). If a line ends with “&” (with no white space following)
it is continued on the next line, and any characters after the first “!” that is not inside single or double quotes
are considered a comment and are ignored (up until the trailing “&” if one is present). This should be familiar to
BASIC-PLUS users.

A.1 Default keyboard layout

The keypad layout generated by E11’s predefined keyscripts may take a little getting used to but it’s intended to be
familiar if your fingers are already comfortable using KED or EDT on a real VT100. Just don’t look at the keypad,
the keys are where you expect in spite of having the wrong labels. Similarly, the CTRL characters on the main
keyboard are in the same places as on a VT100, including the non-alphabetic ones (e.g. CTRL/SPACE generates
NUL, CTRL/˜generates RS, etc.). The “backspace” key generates DEL because that’s what DEC operating systems
normally use. Use CTRL/H to get a backspace character. Line feed is CTRL/J, and on 104-key keyboards it’s

89

90 Keyboard Script Language

also the “context menu” key next to the right-hand Ctrl key.

The keypad digits and “.” key work as marked (you must be in Num Lock mode to get this on 84-key keyboard,
it doesn’t matter on 101- or 104-key keyboards). The keys around the top and right edges of the keypad are not
as marked, but correspond to the PF1–PF4, hyphen, comma, and ENTER keys of the VT100. The comma key is
missing unless you have an 84-key AT keyboard. CVT Avant Prime and Avant Stellar, and Northgate Omnikey
102 keyboards (which were all apparently designed by the same person) have an “=” key where the VT100 comma
belongs but unfortunately there is no way for software to distinguish it from the =/+ key on the main keyboard so
E11 can’t use it as a comma, so F8 must be used instead. To get the normal function of the Num Lock key (and
Esc, Scroll Lock, and Sys Req on an 84-key AT keyboard), press Alt, Ctrl, or Shift at the same time (it doesn’t
matter which). The VT100 keypad hyphen, comma, period, and ENTER keys are also available as the F6, F8, F9,
and F10 keys (see below). On an IBM AT 84-key keyboard (which has the F-keys stacked vertically) this gives the
same layout as the right-hand edge of a VT100 keypad.

If your keyboard has an F12 key, pressing it will send the current date and time in the format “hh:mm:ss dd-
mmm-yyyy,” unless you DEFINE it to do otherwise. This is intended to be useful when starting an RSX or IAS
system.

CON1: CON2: CON3: CON4: CON5: CON6:
- CON7: CON8:, CON9:.

CON10:
Enter CON11: CON12:

Date

Default F-keys on 101- and 104-key keyboards

0 .

Enter

1 2 3

4 5 6

-

7 8 9

NumLock
PF1 PF2 PF3 PF4

0 .

Enter

1
2
↓ 3

4
← 5 6

→
,

7
8
↑ 9 -

Esc
PF1

NumLock
PF2

ScrLock
PF3

SysReq

PF4

CON9:.
CON10:
Enter

CON7: CON8:,

CON5: CON6:
-

CON3: CON4:

CON1: CON2:

Default keypad layout on 101- Default keypad layout on IBM F-keys on IBM
and 104-key keyboards AT 84-key keyboards AT keyboards

A.2 Keyboard script statement descriptions

string

Sends the specified string. The string may be any combination of double quoted strings ("string"), single quoted
strings (’string’), and single ASCII characters (CHR$(n)), all concatenated with plus signs (+). Note that PDP-
11 serial ports normally have only one or two characters worth of input buffering, and E11 currently buffers 32
characters per port in addition to that (this number may increase in the future), so it is not possible to send

Keyboard Script Language 91

arbitrarily long strings.

AMPM

Sends “AM” or “PM” depending on whether the time read by GETTIME is before or after noon.

ANSWERBACK

Sends the answerback string (defined on the SET-UP B screen using Shift-A).

BREAK

Sends a BREAK (i.e. a NUL character with a framing error) to the PDP-11.

CLEAR flag

Clears a read/write flag. See section A.4 for a list of flag names.

COPY

Copies the currently selected text (see SELECT etc.) into the paste buffer, where it can be be pasted with PASTE.

DAY1

Sends the 1- or 2-digit day of the month (1–31) as read by GETTIME.

DAY2

Sends the 2-digit day of the month (01–31) as read by GETTIME.

GETTIME

Reads the current date and time (as an atomic operation to avoid race conditions) and stores it internally for use
by HOUR2/MINUTE2/SECOND2) etc. GETTIME should be executed once before any sequence of commands that sends
the various date/time fields. This is done explicitly, instead of having each individual command get the time itself
before sending its field, in order to ensure that all the fields are coordinated and don’t contain mismatched data
if the clock rolls over while the date/time string is being composed. Without a preceding GETTIME statement, the
statements that send the individual parts of the date/time will send garbage.

HOUR1

Sends the 1- or 2-digit hour of the day (0–23) as read by GETTIME.

HOUR12

Sends the 1- or 2-digit hour (1–12) as read by GETTIME.

HOUR2

Sends the 2-digit hour of the day (00–23) as read by GETTIME.

HUNDREDTH2

Sends the 2-digit hundredth of a second (00–99) as read by GETTIME.

92 Keyboard Script Language

IF <expr1> THEN &

[statement1] &

ELSEIF <expr2> THEN &

[statement2] &

...

ELSE &

[statement3] &

ENDIF

Executes statements conditionally. The expressions may be made up of any combination of read-only and read/write
flags (see section A.4 for a list of flag names), the operators AND, NOT, OR, and XOR, and parentheses (to override the
default binary operator precedence, which is NOT, AND, and OR/XOR from highest to lowest with OR and XOR being
equal).

If the expression after the IF is true, the statement (which may actually be multiple statements separated by “:”
or “\” characters) following the THEN is executed, and after that execution then skips to after the ENDIF. Otherwise
the expression following the ELSEIF (if any) is similarly tested, followed by any successive ELSEIFs if the first fails.
Finally the ELSE clause (if any) is executed if no (ELSE)IF was true. This is pretty much the same as FORTRAN-77
or any language with block-structured IFs.

The ELSEIF keyword is provided as a convenience to avoid excessive nesting:

IF a THEN &

x &

ELSEIF b THEN &

y &

ELSE &

z &

ENDIF

is equivalent to:

IF a THEN &

x &

ELSE &

IF b THEN &

y &

ELSE &

z &

ENDIF &

ENDIF

LASTSIMILARYEARBEFORE year

Changes the year stored by the last GETTIME to the last year before year that had all the same days of the week as
the current year. The idea is that a LASTSIMILARYEARBEFORE 2000 command may be used to run a non-Y2K-safe
PDP-11 operating system and still get the correct day of the week in listings, reports, etc.

LETTER string1

Acts as a normal alphabetic (“letter”) key. String1 is a one-character string. If CTRL is true, string1 is sent with
the high 3 bits set to 0. Otherwise if CAPS or SHIFT is true then string1 is sent with bit 5 set to 0. Otherwise
string1 is sent with bit 5 set to 1. This has the effect of converting it to lower or upper case as appropriate, and
converting it to the correct control character if CTRL is true, assuming it’s a US-ASCII alphabetic character.

Keyboard Script Language 93

MILLISECOND3

Sends the 3-digit millisecond (000–999) as read by GETTIME.

MINUTE2

Sends the 2-digit minute (00–59) as read by GETTIME.

MONTH1

Sends the 1- or 2-digit month (1–12) as read by GETTIME.

MONTH2

Sends the 2-digit month (01–12) as read by GETTIME.

MONTH3

Sends the 3-letter English month abbreviation (Jan–Dec) as read by GETTIME.

NONDATA

Specifies that the current key is not a data key and should not generate keyclick (if E11 supports it in the future)
or count from a “SET flag FOR n” prefix.

NONREPEATING

Specifies that the current key should not auto-repeat.

NOREPEATS

Specifies that the current key should prevent all other keys from auto-repeating until it is released.

NUMBER string2

Acts as a normal numeric (“number”) key. String2 is a two-character string. If CTRL is true, nothing is sent.
Otherwise if SHIFT is true then the second character of string2 is sent. Otherwise the first character of string2 is
sent.

PASTE

Pastes the text from the paste buffer (as copied with COPY), as if it were typed at the keyboard.

PRESS keyname

Executes the “keypress” script for the specified key, i.e. the script defined by DEFINE KEYPRESS for that key.

PRIMARY n

Changes the screen on the primary video (or only) display to screen n (1–12).

PROMPT

Pops up an E11 command prompt. The primary video display is switched to TT0:’s screen if it is not already there.

94 Keyboard Script Language

RELEASE keyname

Executes the “keyrelease” script for the specified key, i.e. the script defined by DEFINE KEYRELEASE for that key.

RSTSAMPM

Sends “AM” or “M” or “PM” depending on the time read by GETTIME, using the unusual rules used by pre-V9.0
versions of RSTS/E:
00:00–00:00:59.99 is PM (the minute starting at midnight)
00:01–11:59:59.99 is AM as usual
12:00–12:00:59.99 is M (the minute starting at noon)
12:01–23:59:59.99 is PM as usual

SCROLLBACK {BACKWARD | FORWARD} {n | SCREEN}

Moves scrollback display backward or forward, either by n line(s) (where n is in the range 1–127) or by almost one
screen.

SECOND2

Sends the 2-digit second (00–59) as read by GETTIME.

SECONDARY n

Changes the screen on the secondary video display to screen n (1–12). This is useful only on systems with two
video displays, and performs no operation on systems with only one.

SELECT

Begin selecting text using the mouse. Text on the screen is shown in reverse video starting at the current mouse
location, and extending to wherever the mouse moves, including into scrollback memory, until a COPY command is
executed (typically by the MOUSERELEASE keyscript for the same button which executed the SELECT) which copies
the highlighted text into the paste buffer. Selection is aborted (and the text being selected is un-highlighted) if the
PDP-11 sends more data to the screen while selection is in progress.

SELECTWORD

Select the word at the current mouse location.

SELECTLINE

Select the entire line (including a carriage return character at the end) at the current mouse location.

SET flag [FOR n]

Sets a read/write flag. See section A.4 for a list of flag names. If the “FOR n” modifier is given, it means that the
flag is set for the specified non-zero number of data keystrokes, and then automatically clears after the script for
the nth keystroke is executed. This is used for the prefix keys common on non-English keyboards, and can also
be useful for disabled users. Note that the current key (the one whose keyscript contains this “SET . . . FOR n”
command) counts from the total unless a NONDATA statement is part of its definition.

Example using SET to redefine the right-hand Alt key as an “acute accent” prefix key, which makes the vowel keys
send the ISO Latin-1 codes for the same letters with acute accents when pressed immediately afterwards:

Keyboard Script Language 95

DEFINE KEYPRESS RALT = SET FLAG1 FOR 1 : NONDATA

DEFINE KEYPRESS A = IF FLAG1 THEN LETTER CHR$(193) ELSE LETTER ’A’ ENDIF

DEFINE KEYPRESS E = IF FLAG1 THEN LETTER CHR$(201) ELSE LETTER ’E’ ENDIF

DEFINE KEYPRESS I = IF FLAG1 THEN LETTER CHR$(205) ELSE LETTER ’I’ ENDIF

DEFINE KEYPRESS O = IF FLAG1 THEN LETTER CHR$(211) ELSE LETTER ’O’ ENDIF

DEFINE KEYPRESS U = IF FLAG1 THEN LETTER CHR$(218) ELSE LETTER ’U’ ENDIF

SETUP

Enters/exits SET-UP mode.

TICK

Sends the timer tick number as read by GETTIME. Normally this is a 2-digit number, 00–49 for a 50 Hz clock or
00–59 for a 60 Hz clock, but the actual number of digits is selected to fit the maximum possible timer tick number,
which is one less than the SET HERTZ setting.

TOGGLE flag

Toggles a read/write flag. See section A.4 for a list of flag names.

UCMONTH3

Sends the 3-letter upper case English month abbreviation (JAN–DEC) as read by GETTIME.

YEAR2

Sends the 2-digit year (00–99) as read by GETTIME.

YEAR4

Sends the 4-digit year (1980–2099) as read by GETTIME.

A.3 Key names

This section defines the key names used for DEFINE KEYPRESS, DEFINE KEYRELEASE commands, and PRESS, RELEASE
statements. Keycap descriptions are for US English keyboards and may differ on keyboards designed for other
languages. For most of these keyboards the physical layout is close to the US layout so name of the key that would
be in the same position on a US keyboard should be used in script language definitions. Keys labeled “EKB only”
exist only on the 101-key “Enhanced” keyboard and the 104-key “Windows 95” keyboard. It is not considered an
error to bind keyscripts to them even when only an 84-key AT keyboard is present, but keyscripts for keys that are
missing will never be executed.

’
"
’

* * key on keypad, or
PrScr
* key if present

,
<
,

- -

96 Keyboard Script Language

.
>
.

/
?

/

0–9 Numeric keys (top row of main keyboard)

;
:
;

=
+
=

A–Z Alphabetic keys
BACKSPACE Backspace key (top right of main keyboard)
CAPSLOCK Caps Lock key
CONTEXT Context Menu key (104-key keyboard only)
DARROW Down arrow key (EKB only)

DEL Del (EKB only)
END End (EKB only)

ENTER Enter
ESC Esc

F1–F12 Function keys (F11, F12 are on EKB only)
HOME Home (EKB only)
INS Ins (EKB only)

KP0–KP9 Numeric keys on keypad
KPENTER Enter key on keypad (EKB only)
KPMINUS - key on keypad

KPPERIOD . key on keypad
KPPLUS + key on keypad
KPSLASH / key on keypad (EKB only)

LALT Left (or only) Alt key
LARROW Left arrow key (EKB only)
LCTRL Left (or only) Ctrl key

LSHIFT Left Shift key
LWIND Left “Windows” key (104-key keyboard only)

NUMLOCK Num Lock key
PAUSE Pause key (EKB only) — N.B. most keyboards send the “release” code for this key imme-

diately after the “press” code, rather than waiting until the user actually releases the key,
so it would not be useful to try to redefine this key as a shift key

PGDN PgDn (EKB only)
PGUP PgUp (EKB only)

POWER Power (newer keyboards)
PRSCR Print Screen key (EKB only)
RALT Right Alt key (EKB only)

RARROW Right arrow key (EKB only)
RCTRL Right Ctrl key (EKB only)

RSHIFT Right Shift key
RWIND Right “Windows” key (104-key keyboard only)

SCRLOCK Scroll Lock key
SLEEP Sleep (newer keyboards)
SPACE Space bar

SYSREQ Sys Req (84-key keyboard only)
TAB Tab

UARROW Up arrow key (EKB only)
WAKE Wake (newer keyboards)

[
{

[

Keyboard Script Language 97

\
|

\

]
}

]

‘
~
‘

In addition to the above, the following keywords define keys that don’t exist on most keyboards, for completeness
in case they are useful on special-purpose keyboards:

KEY00 Sends scan code 00 hex
KEY55 Sends scan code 55 hex
KEY56 Sends scan code 56 hex (unmarked key on some keyboards made by Focus)
KEY59 Sends scan code 59 hex
KEY5A Sends scan code 5A hex
KEY5E Sends scan code 5E hex (syn. for POWER)
KEY5F Sends scan code 5F hex (syn. for SLEEP)

Mouse button names may be used only in DEFINE MOUSEPRESS and DEFINE MOUSERELEASE commands:

LEFT Left mouse button
MIDDLE Middle mouse button (if any)
RIGHT Right mouse button

X1 Extra button on some mice
X2 Extra button on some mice

The double-click, triple-click, and scroll-wheel events are used in DEFINE MOUSEPRESS only:

DOUBLELEFT Double-click on left mouse button
DOUBLEMIDDLE Double-click on middle mouse button (if any)
DOUBLERIGHT Double-click on right mouse button

DOUBLEX1 Double-click on X1
DOUBLEX2 Double-click on X2

TRIPLELEFT Triple-click on left mouse button
TRIPLEMIDDLE Triple-click on middle mouse button (if any)
TRIPLERIGHT Triple-click on right mouse button

TRIPLEX1 Triple-click on X1
TRIPLEX2 Triple-click on X2
WHEELDOWN Scroll wheel (etc.) down one detent
WHEELLEFT Scroll wheel (etc.) up one detent

WHEELRIGHT Scroll wheel (etc.) left one detent
WHEELUP Scroll wheel (etc.) right one detent

A.4 Flags

The keyboard script language has a number of boolean flags, which may be used in keyscripts and DEFINE LED

commands. They are broken into two groups: read/write flags, and read-only flags.

98 Keyboard Script Language

A.4.1 Read/write flags

Read/write flags can be tested or modified by keyscripts. Their values may be used in IF expressions or DEFINE

LED commands, or they may be changed using SET, CLEAR, and TOGGLE statements. The descriptions below are
only defaults used by E11’s initial keyboard definitions, the user is free to redefine them at will.

CAPS Caps Lock state
EDITBACKUP EDT/KED editor direction, maintained by default keyscripts for keypad 4 and 5 (true=BACKUP,

false=ADVANCE)
FLAGn User-defined flags (n=1–4), reserved for user keyscripts
LALT Left (or only) Alt key state

LCTRL Left (or only) Ctrl key state
LSHIFT Left Shift key state

NUM Num lock state
RALT Right Alt key state

RCTRL Right Ctrl key state
RSHIFT Right Shift key state
SCROLL Scroll lock state (any change sends XOFF or XON)

A.4.2 Read-only flags

Read-only flags can be tested by keyscripts but not modified. This means they may be used in IF expressions or
DEFINE LED commands, but not in SET, CLEAR or TOGGLE commands. The values are maintained and updated by
E11 itself.

ALT OR of LALT and RALT

APPKEYPAD Applications keypad mode (ESC =)
CHARSETA Character set A (UK) is currently selected
CHARSETB Character set B (US) is currently selected
CHARSET0 Character set 0 (graphics) is currently selected
CHARSET1 Character set 1 (undefined) is currently selected

CTRL OR of LCTRL and RCTRL

CURSORKEY Cursor key mode (ESC [?1h)
EKB True: 101-key Enhanced (or 104-key W95) keyboard, false: 84-key AT keyboard
G0 G0 character set is selected (SI)
G1 G1 character set is selected (SO)

INSERT VT102 “insert” mode is active (ESC [4h)
L1 keyboard LED 1 is lit (ESC [1q)
L2 keyboard LED 2 is lit (ESC [2q)
L3 keyboard LED 3 is lit (ESC [3q)
L4 keyboard LED 4 is lit (ESC [4q)

LOCAL Terminal is in local mode
NEWLINE Newline mode (ESC [20h)
ONLINE Terminal is on-line (not in local mode)
SHIFT OR of LSHIFT and RSHIFT

TERAK Terak keyboard (TK:)
VT52 VT52 mode (ESC [?2l)
WPS WPS terminal (\ and LINE FEED (CONTEXT) keys swapped)

Appendix B

Debugging Features

Ersatz-11 provides a full assortment of debugging commands. These can be useful for PDP-11 program development,
and can also be invaluable for troubleshooting configuration problems, or for providing detailed information to D
Bit when reporting a problem in Ersatz-11 itself.

Real PDP-11s all provide some form of programmer’s console. This can be either a traditional binary “switches
and lights” front panel, an octal keypad and LED display, a simple ASCII console emulator program running
out of ROM, or the “Micro-ODT” program implemented in microcode in systems based on the LSI-11, DCF11,
and DCJ11 chip sets. Regardless of the implementation, the programmer’s console provides some way to examine
and deposit memory, inspect and modify the general registers and processor status word, and control program
execution.

E11 provides all of this functionality, as well as many more features, using the interactive “E11>” command prompt,
which can be popped up at any time by pressing Shift-Enter. Most of the commands related to program debugging
can be abbreviated to one letter, to save typing, and the user can further streamline the debugging process by
binding often-used commands to a single keystroke using DEFINE KEYPRESS commands.

99

100 Displaying and modifying memory

Debugging commands:
ASSEMBLE Assemble PDP-11 code into memory
BREAKPOINT Set breakpoint conditions
C= (etc.) Set condition flag value
CALCULATE Evaluate an expression (abbreviation = “&”)
CM= (etc.) Set current/previous processor mode
DEPOSIT Deposit into memory or I/O page registers
DUMP Dump memory to a file
EXAMINE Examine memory or I/O page registers
FPREGISTER Display/change floating point registers
GO Start program execution
HALT Halt program execution
INITIALIZE Initialize CPU (like RESET instruction)
LIST List disassembled PDP-11 code
LOAD Load a binary file into memory
LOG Log disk/tape/Ethernet controller commands to a file
MAP Translate virtual address to physical address
PRIO= Set processor priority
PROCEED Proceed with execution, with an optional breakpoint
PS= Set processor status word
R0= (etc.) Set general register value
REGISTER Display general registers and PSW fields
SET DISPLAY Set up hardware display register
SET PCLOG Enable/disable PC logging on each fetch
SET SWITCH Set up switch register (real or virtual)
SHOW CSR Display name of any I/O page register
SHOW DISPLAY Inspect value of display register
SHOW MEMORY Show E11 memory usage
SHOW MMU Display MMU maps
SHOW VERSIONS Show version numbers of E11 and host OS
STEP Execute one (or several) single program step

B.1 Displaying and modifying memory

Memory may be displayed or modified one word at a time using the EXAMINE and DEPOSIT commands. Both can
accept switches that define the virtual address space to use. If no switches are specified, the default is to use the
same space as the previous EXAMINE or DEPOSIT command. Any switch used on either command sets the default
for both commands.

These commands can also operate on multiple memory words. Normally when only one address is specified, the
EXAMINE command will display just one word, but if a starting and ending address is specified, that entire range,
no matter how large, is displayed on the terminal. If an EXAMINE command is given with no address whatever, it
displays eight words starting at the word following the last EXAMINE command. Multiple words can be entered into
memory by simply entering more than one number following the address in a DEPOSIT command. The numbers
are entered into consecutive words of memory starting at the specified address. For convenience, these commands
may be abbreviated to E and D.

Assembly and disassembly 101

B.2 Assembly and disassembly

The ASSEMBLE and LIST commands display or modify memory in very much the same way as the EXAMINE and
DEPOSIT commands, except that they accept and display assembly language source instead of octal data. Both
commands accept optional switches to set the virtual address space to use, and if no switches are specified the
default is to use the same virtual address space from the previous ASSEMBLE or LIST command.

The ASSEMBLE command starts the assembler at the specified address, or if no address is specified the default is to
continue assembly at the next address following the last line assembled by the previous ASSEMBLE command. E11
prompts for each line, giving the address where it will be entered into memory. Entering a blank line (or typing
CTRL/C) returns to the E11 command prompt.

The LIST command lists eight lines of code starting at the specified address, or if no address is specified then eight
lines of code are disassembled following the last line displayed by the previous LIST command or REGISTER display.
Two addresses can be given, to produce a disassembly of all code in that range of addresses.

B.3 Registers

The PDP-11 registers may be displayed at any time using a REGISTER command (R for short). This displays all
of the registers and PSW flags at once. Individual registers may be displayed using commands like “& R3”. Any
value that is displayed by the REGISTER command may be set using the same keywords as is used in the display.
For example, if the register dump includes “C=1” and “PM=U” to indicate that the carry flag is set and the previous
mode is “user”, it is possible to clear the carry flag by typing “C=0”, or change the previous mode to “supervisor”
by typing “PM=S”. And of course the general registers may be changed with commands such as “R3=100”, or even
“SP=SP+4”.

The FP11 floating point processor state may be inspected using the FPREGISTER command. However it is less
flexible than the regular REGISTER command, all register values are displayed and set using octal numbers.

The SET PCLOG ON command can be used to log the PC value before each instruction fetch, at a slight speed
penalty. The last 64 values may be shown at any time using SHOW PCLOG. This can be very useful for tracing the
events leading up to a trap or halt.

B.4 Breakpoints and single-stepping

The PROCEED command takes an optional numeric argument, which is a PC value. PDP-11 instruction execution
will halt whenever that address is reached. This is done using address comparison, rather than by depositing
anything into memory (regular PDP-11 debuggers do breakpoints by inserting a BPT instruction into memory),
which means it works even if the memory contents are overwritten before the breakpoint is reached.

BREAKPOINT takes a boolean expression, and adds it to a list of conditions which will halt execution. The halt
conditions are compiled into native code which is executed before each PDP-11 opcode fetch, and the CPU halts if
any condition is satisfied. Expressions may reference processor registers and/or memory (in any space), supporting
very sophisticated bug-catching.

STEP allows proceeding one instruction at a time. If a numeric argument is specified, it gives the number of steps
to perform, with a default of one step. This command can be abbreviated to S so that it may be typed quickly.
For even greater convenience, a key may be redefined to enter this command with a single keystroke. For example:

102 Loading and dumping memory

def key kpplus = ’step’+chr$(13)

This will cause a step to be executed every time the keypad + key is pressed.

The GO command starts execution at full speed, with no breakpoints or single stepping. An optional starting
address may be given. If it is omitted, execution continues at the current PC value. Unlike some versions of ODT,
E11 does not issue an implied INIT pulse with either the GO or PROCEED command. If necessary the system may
be initialized, including all emulated devices and bus adapters, using a separate INITIALIZE command.

B.5 Memory mapping

E11 can display the current status of the memory management unit at any time using the SHOW MMU command.
There are two optional arguments, the mode (KERNEL, SUPERVISOR, or USER) and the space (INSTRUCTION or DATA).
Both may be abbreviated to one letter, and the defaults are KERNEL INSTRUCTION. The display for each page gives
the starting virtual address, starting physical address, block limits, access, and the A (accessed) and W (written)
dirty bits. Also, the current values of MMR0 through MMR3 are displayed (MMR3 is omitted if the current CPU
emulation doesn’t include MMR3).

The MAP command may be used to compute a physical address, given a virtual address. It takes the same switches as
the EXAMINE and DEPOSIT commands, to give the mode and space parameters for the virtual address. It displays the
resulting 22-bit physical address, as if it had been processed by the MMU during a PDP-11 instruction. However,
like the EXAMINE and DEPOSIT commands, the MMU’s status is not affected by this command, so the A bit will not
be modified in this page’s PDR, and no MMU abort will occur if the page is marked “no access” or the address is
outside of the range of valid blocks in that page.

The SHOW CSR command displays a one-line description of an emulated CSR on the I/O page, given its address. It
works only on devices which are currently configured.

B.6 Device logging

Although the controller LOG commands are provided mainly as an aid to reporting Ersatz-11 problems to D Bit,
they can be invaluable to users who are debugging device drivers or boot blocks. When logging is enabled for a
given disk, tape, or network controller, every command issued to that controller by the PDP-11 is recorded in the
log file with a time stamp. Other parameters such as buffer addresses and lengths, unit numbers, disk addresses,
and tape record lengths, are recorded too, and for some devices the command’s completion status is saved as well.
For Ethernet devices, switches on the LOG command line give independent control over logging of host commands,
transmitted packets, and received packets.

B.7 Loading and dumping memory

The LOAD and DUMP commands may be used to transfer between PDP-11 memory and files on the host system. An
optional series of address ranges may be specified to do scatter/gather transfers. If no addresses are specified, the
transfer starts at the beginning of memory and goes until the end of the files (for LOAD) or the end of memory (for
DUMP).

Switch and display registers 103

B.8 Switch and display registers

The SET SWITCH and SHOW DISPLAY commands give access to emulated switch and display registers, which work
the same way as those on the binary front panels on early PDP-11 models. The switch/display register is located
at address 17777570 as long as a SET CPU SR command, or some other SET CPU nn command which includes SR,
has been issued. This provides a crude one-word I/O register which can be accessed by a program running in kernel
mode, for things like displaying checkpoint information during debugging.

Simple hardware can be attached to E11’s switch register and display register emulations using SET commands. A
display register which connects to an LPT port is available from D Bit as a bare PC board.

Appendix C

Installable Plug-ins

Ersatz-11 has a built-in linking loader, invoked by the INSTALL command, which allows “plug-in” modules to be
integrated with E11 at run time. This makes it possible to implement custom devices and/or instructions using
80x86 assembly language, Watcom C, or Digital Mars C, without requiring a custom version of Ersatz-11 or access
to its source code.

A plug-in module is in the 32-bit “portable executable” .DLL format, which is the standard executable file format
for Windows NT and Windows 95 and later, and is supported by standard linkers. Ersatz-11 provides no-op stubs
for a number of Win32 calls, so that the regular Windows library start-up module supplied with Watcom C or
Digital Mars C will run unmodified. The supplied stubs are only enough to start up the C code without errors,
but they don’t provide Windows system services. In particular, anything which uses malloc() will not work (use
GetMemory() instead).

There is no difference in the file format or command syntax needed to load an instruction emulation plug-in, as
compared to a device emulation plug-in. A plug-in’s purpose is defined by the calls it makes. Also, there is no need
to split multiple device or instruction emulations into separate modules, they can be combined into one.

C.1 Calling conventions

As is traditional with Win32 DLLs, Ersatz-11 plug-in modules must use stdcall calling conventions when calling
API entry points, and these conventions are also used when Ersatz-11 is calling user code. These are as follows:

• Caller pushes arguments right to left, before making NEAR call

• Callee pops arguments upon return, using RET n instruction

• EBX, EBP, ESI, EDI and all segment registers are preserved by callee

• DF is 0 on entry and must be preserved by callee

• Symbol names are case-sensitive but are otherwise used as-is (no underscore prefix or @nn suffix is added,
despite linker-induced illusions to the contrary)

• Return value (if any) is passed in EAX (zero- or sign-extended as needed)

104

Installable Plug-ins 105

C.2 Entry conditions

After a plug-in module is loaded and linked, a call is made to its entry address, with the following parameters:

int stdcall DllMain(unsigned long hinstDLL,unsigned long fdwReason,void *lpvReserved)

This is compatible with the standard Win32 DLL entry point (and this is the name of the user-written routine
which the C library startup code will call after its own initialization, with the same parameters).

hinstDLL is a unique number assigned when the module is loaded. It has no purpose in E11, but is part of the
Win32 library startup so it is included for compatibility.

fdwReason is the reason for the call, either 1 (DLL PROCESS ATTACH) if the library is being loaded, or 0
(DLL PROCESS DETACH) if it is being unloaded.

lpvReserved points at the command line when loading, and contains NULL when unloading. The command line
is whatever follows the filename in the INSTALL command, if anything, in DOS form (i.e. a length byte followed by
a CR-terminated string). This can be useful for passing CSR addresses (etc.) or other configuration information to
the installed module. For example, “INSTALL FOO.DLL CSR=164000” will result in lpvReserved pointing at the
following (in E11’s own scratch memory, which will be re-used after the initialization routine returns):

.BYTE 11. ;length of string

.ASCII / CSR=164000/ ;the string itself

.BYTE 15 ;always ends with carriage return

DllMain() returns 1 (TRUE) for success, or 0 (FALSE) for failure, in which case E11 will issue an error message.

C.3 Exit conditions

Since the loading of a plug-in module, and whatever calls it makes, are completely unrelated in E11, E11 has no
idea what resources have been allocated by a particular module so it doesn’t automatically free them when that
module exits (e.g. due to a QUIT command). Therefore, each module must keep track of its resources and free
them when they are no longer needed. The library shutdown call to DllMain() is a good time to release any
unneeded resources.

C.4 Building plug-in modules

All C source files should include a #include ‘‘e11.h’’ line at the beginning. The E11.H header file and E11.LIB

import library are available from D Bit.

To build a DLL with Watcom C (available from www.openwatcom.org, runs under MS-DOS or Windows or OS/2),
compile and link as follows (e.g. to build FOO.DLL from FOO.C):

wcc386 -bt=nt -bd -s foo.c

wlink @foo

106 Installable Plug-ins

This requires a FOO.LNK linker script as follows:

system nt dll

name foo.dll

file foo

library e11.lib

To build a DLL with Digital Mars C (available from www.digitalmars.com, runs under Windows), compile and link
as follows (e.g. to build FOO.DLL from FOO.C):

dmc -mn -WD foo.c e11.lib kernel32.lib

C.5 Entry points

This section defines all of the callable Ersatz-11 entry points. They are grouped roughly by function. Most of these
calls may be safely made only from main program level, i.e. not from an interrupt service routine, signal handler,
or non-mainline thread. Exceptions are noted in the entry point descriptions below.

An include file and import library for Watcom C or Digital Mars C are available from D Bit. Defined data types
are as follows:

E11HANDLE is a 32-bit token used by E11 internally.
word is an unsigned 16-bit value.
dword is an unsigned 32-bit value.

Pointers are normally 32-bit flat addresses. DLLs are considered to be trusted, so E11 does not check parameter
values and crashes are possible if bad numbers are passed.

C.5.1 Ersatz-11 environment

This section describes calls which obtain information about the environment where the plug-in module is running.

unsigned long E11Version(void)

Returns the Ersatz-11 version number, as follows:

MAJOR*256.+MINOR

MAJOR is the major version number as an integer, and MINOR is the minor version number in hundredths (0–99).

void *GetItem(const char *itemname)

Gets a pointer to a constant data structure or string, which corresponds to the supplied .ASCIZ item name. If the
item is undefined, then NULL is returned. This allows checking for arbitrary E11 features which may be present
in particular versions, without needing specific knowledge of ranges of Ersatz-11 versions.

Installable Plug-ins 107

C.5.2 I/O device emulation

The most likely purpose for a plug-in module is to emulate a peripheral device. In order to do this, it must be able
to intercept reads and writes to its I/O page registers, and must be able to interrupt the emulated PDP-11 and/or
perform DMA to and from PDP-11 memory. The next few calls accomplish these functions.

E11HANDLE GetCSRBlock(dword first,dword count,word (*dati)(),void (*dato)(),

void (*init)())

Allocates a block of control/status register locations on the I/O page, to be emulated by this module. The return
value is zero on failure, otherwise it’s a handle which may later be passed to RetCSRBlock() to release the block of
addresses. first is the absolute address of the first CSR to allocate, and is represented as a 22-bit even number,
even if the current CPU emulation is set for a smaller address space. count is the count of registers, i.e. the number
of words of I/O space to allocate starting at that address. dati, dato, and init are pointers to functions which
E11 will call according to what the PDP-11 code does:

word stdcall dati(dword addr)

Called whenever the PDP-11, or console EXAMINE command etc., reads a byte or word on the I/O page which is
within the range passed to GetCSRBlock(). This is equivalent to a Unibus “DATI” bus cycle. PDP-11 busses do
not distinguish between byte and word read cycles, a word is always read and if it’s a byte instruction then the
CPU chooses the proper byte out of that word. addr is the absolute 22-bit address of the I/O page location to be
read, and the function’s return value is the 16-bit word to be passed back to the PDP-11.

void stdcall dato(dword addr,dword value,dword datob)

As above, but called when a byte or word is being written to an I/O page register in the range covered by the
GetCSRBlock() call. This is equivalent to a Unibus “DATO” or “DATOB” bus cycle. addr is the absolute 22-bit
I/O page address as above. value is the 16-bit word to be written, or if it’s a byte write, it’s two side-by-side
copies of the 8-bit byte being written. datob distinguishes between word and byte writes, 0 means word (DATO),
1 means byte (DATOB).

void stdcall init(dword addr)

Called on every RESET instruction, or on console INITIALIZE commands etc. This is equivalent to a Unibus “INIT”
pulse. The device emulation code should perform whatever initialization would be appropriate for a bus reset. addr
is the base 22-bit address that was passed to GetCSRBlock(), and is supplied in case the same handler routine is
used for more than one device, so that it can tell them apart.

void RetCSRBlock(E11HANDLE handle)

Returns a block of I/O page CSR registers, which had previously been allocated using GetCSRBlock(). This is
normally done as part of the cleanup in the module’s DllMain() exit handling. Future accesses to the I/O page
addresses covered by the GetCSRBlock() call will cause emulated bus timeouts.

108 Installable Plug-ins

E11HANDLE GetIntQel(dword level,dword rank,dword vec)

Allocates an interrupt queue element. A module which needs to deliver emulated interrupts to the PDP-11 must
allocate one interrupt queue element for every possible interrupt that can be outstanding at one time. This
normally means one queue element for each interrupt vector that the device uses. This function returns zero on
failure, otherwise the return value is the queue element’s handle, which is a number used to identify the queue
element in other calls to E11.

level is the interrupt priority level, which must be in the range 4–7. This corresponds to the Unibus BR and BG
lines (or their Q-bus equivalents), and is the same as the priority that would be set using a priority jumper plug
on a typical Unibus peripheral card.

rank is the daisy chain rank within a given priority level, and indicates the device’s distance from the CPU on
this priority level. Since the emulator has no physical daisy chain, it’s generally not possible to know what other
devices this one should go between, so the daisy chain rank is just a rough guess. The value 0 is reserved for the
PIRQ feature that’s built into some CPU models, and E11 generally uses 1 for the 50/60 Hz clock and the console
SLU ports, since in most systems these are physically located on the CPU card, or immediately next to the CPU.
So most devices will use values 2 and up. If two devices interrupt at the same priority level and with the same
daisy chain rank, E11’s policy is to acknowledge them in the order that they occurred.

Finally, vec is the vector address through which the interrupt will be taken once it is acknowledged. It must
be a multiple of four. The vector need not be valid except when an interrupt has actually been enqueued using
EnqueueInt(), so if the EnqueueInt() completion routine will set the vector at bus grant time, a junk value such
as -1 may be used here.

void RetIntQel(E11HANDLE handle)

Returns an interrupt queue element that had been obtained earlier using GetIntQel(). This call is normally made
as part of the DllMain() exit processing. If an interrupt is enqueued using this queue element, it is dequeued
before the element is freed.

void EnqueueInt(E11HANDLE handle,int (*crtn)(dword),dword parm)

Enqueues an interrupt request on a previously allocated interrupt queue element. This is equivalent to a Unibus
device asserting its “BR” line and waiting for service. The interrupt is only enqueued, and has not yet begun
processing on return, because that can only happen when the emulated PDP-11 is between instructions. Note that
like most E11 entry points, this one may be called only from main program level, not from a hardware interrupt
service routine or signal handler. The EnqueueFork() call provides access to E11’s internal “fork” queue, which
allows scheduling a call in the near future to a user subroutine at main program level, from anywhere. This call
may be used in an interrupt service routine or signal handler to schedule a call to a separate user-supplied routine
which makes the EnqueueInt() call.

Simple devices can simply pass NULL as the crtn parameter, and any value for the parm parameter. In this case
the interrupt will quietly occur on its own whenever the PDP-11 lowers its priority and begins interrupt service,
and the vector address that was set in the GetIntQel() call will be used, unless it is canceled by a DequeueInt()

call before then.

Devices which need to be informed when an interrupt is actually being serviced, and/or need to wait until the last
moment to choose an interrupt vector, should pass a function pointer as the crtn parameter. This is a completion
routine, which is called like this:

Installable Plug-ins 109

int stdcall crtn(dword parm)

This routine is called just as the emulated PDP-11 is acknowledging the interrupt and preparing to fetch the
interrupt service routine’s address from the vector. parm is the same value that was passed to EnqueueInt(). It
may be any 32-bit value and is there so that the same completion routine may be used for more than one device.
The routine should do whatever processing its emulated device would do at bus grant time. Its return value is the
actual vector address to interrupt through (which need not be the same as the value passed to GetIntQel()), or
-1 if the interrupt should not be taken after all (a Unibus “passive release”).

Very few devices need this routine. An example would be certain models of the 50/60 Hz line clock, which clear the
“monitor” flag in bit 7 of the CSR whenever the interrupt request is granted. If a NULL pointer is passed instead
of a completion routine address, E11 will just interrupt as usual using the vector address that was already set.

void DequeueInt(E11HANDLE handle)

Dequeues an interrupt request which was scheduled using the EnqueueInt() call. This is generally done on bus
resets, or any time the emulated device’s status is changed so that a previously enqueued interrupt will not happen
after all. handle is the handle of the interrupt queue element to dequeue, as returned from GetIntQel(). It is
perfectly safe to call this routine if no interrupt was actually enqueued, in this case it will simply return without
doing anything. However the handle parameter must be valid, since unpredictable behavior will result if it is not.

long AbsTransfer(dword func,dword pdp11addr,void *x86addr,dword len)

long MapTransfer(dword func,dword pdp11addr,void *x86addr,dword len)

Performs DMA between 80x86 memory and emulated PDP-11 memory. func gives the direction of the transfer,
either TOPDP to transfer from the host to the PDP-11, TOHOST to transfer from the PDP-11 to the host, or COMPARE to
compare the two. pdp11addr gives the PDP-11 buffer address, either an 18-bit Unibus address (for MapTransfer(),
which goes through the Unibus map if it is present and enabled), or an absolute 22-bit address (for AbsTransfer(),
which uses absolute addressing like Q22-bus or the RH70). x86addr is the 80x86 buffer address. len is the length
of the transfer. The return value is zero on success, or the number of bytes not transferred (if stopped due to a bus
timeout), or the two’s complement of this number (if stopped due to a compare mismatch).

C.5.3 PDP-11 instruction emulation

A plug-in module may be used to add custom instructions to the PDP-11 architecture, or provide modified versions
of existing ones. This is similar to what was possible using the hardware user microcode options on the LSI-11 and
PDP-11/60 machines, but it is much more powerful since the code doing the emulation has access to the entire
host computer and operating system, rather than just a PDP-11 micro-machine.

E11HANDLE GetOpcode(dword first,dword count,void (*exec)(),void (*init)())

Allocates a block of PDP-11 opcodes to be emulated by this module, instead of by Ersatz-11 itself. The return value
is zero on failure, otherwise it’s a unique handle which may later be passed to RetOpcode() when the instruction
handler is unloaded. If the range of opcodes conflicts with existing PDP-11 instructions, or other loaded plug-ins,
whoever requested each opcode last will be the one called when it gets executed by the PDP-11.

110 Installable Plug-ins

first is the first opcode value to be intercepted and passed to this handler. count is the number of opcodes to
be intercepted, starting with that value. exec and init are subroutines which E11 will call when appropriate, as
follows:

void stdcall exec(dword opcode)

This routine is called by E11 any time an opcode is executed which is in the range from first to first+count-1.
opcode is the actual opcode used, and may be used for the handler’s internal dispatch table, switch() statement,
etc. This routine does whatever processing is required to execute the instruction, and uses other calls (defined
below) to read and write PDP-11 registers and memory space.

void stdcall init(void)

This routine is called any time the PDP-11 is initialized, through a RESET instruction, INITIALIZE command etc.

void RetOpcode(E11HANDLE handle)

Returns a block of PDP-11 opcodes, previously allocated using GetOpcode(). This call is a normal part of
DllMain() exit processing.

word GetReg(dword regnum)

Reads the value of one of the eight PDP-11 registers, in the current register set. regnum gives the register value,
0–5 for R0–R5, 6 for the SP, and 7 for the PC. The return value is the 16-bit register value.

void SetReg(dword regnum,dword value)

Sets the value of a PDP-11 register. regnum is the register number (0–7, the same as for GetReg()), and value

has the value to store there in its low 16 bits.

dword GetPSW(void)

Reads the zero-extended value of the processor status word.

void SetPSW(dword value)

Sets the value of the processor status word to value.

long Peek(dword space,dword pdp11addr)

Reads a word from a PDP-11 virtual address space. space selects which space to use, and is one of the following:

Installable Plug-ins 111

0 KD kernel data space
1 KI kernel instruction space
2 SD supervisor data space
3 SI supervisor instruction space
6 UD user data space
7 UI user instruction space
8 D current data space
9 I current instruction space
10 PD previous data space
11 PI previous instruction space

pdp11addr is the 16-bit virtual address to read within that space. On success, the return value is the data word,
in the range 0–177777 octal. If the read fails due to an odd address, MMU error, or bus timeout, -1 is returned.
Note that the return value is a signed 32-bit number, so that the -1 error indication can be distinguished from a
valid data value of 177777 octal.

long PeekB(dword space,dword pdp11addr)

Byte version of Peek(), reads a byte from a PDP-11 virtual address space. Return value is the 8-bit byte sign-
extended to a 32-bit number, or else -1 the in case of an error.

int Poke(dword space,dword pdp11addr,dword data)

Writes a word into a PDP-11 virtual address space. space selects which space (see table above), pdp11addr is the
16-bit virtual address in that space, and the low 16 bits of data are the word to write to that address. The return
value is 0 on success, or -1 on failure.

int PokeB(dword space,dword pdp11addr,dword data)

Writes a byte into a PDP-11 virtual address space. The parameters and return value are the same as for Poke(),
except that only the low 8 bits of the data parameter are used.

long PeekCD(dword pdp11addr)

long PeekBCD(dword pdp11addr)

int PokeCD(dword pdp11addr,dword data)

int PokeBCD(dword pdp11addr,dword data)

Special versions of Peek(), PeekB(), Poke(), and PokeB(), which access the current data space. Execution is
slightly faster than the equivalent Peek(D,...) (etc.) calls.

112 Installable Plug-ins

long PeekPhys(dword pdp11addr)

long PeekBPhys(dword pdp11addr)

int PokePhys(dword pdp11addr,word data)

int PokeBPhys(dword pdp11addr,word data)

Special versions of Peek(), PeekB(), Poke(), and PokeB(), which bypass the MMU to access 22-bit physical
address space.

C.5.4 PC memory management

void *GetMemory(dword size)

Allocates a block of PC memory. size is the size of the requested region in bytes. If successful, returns a pointer
to the block of memory. Returns zero (NULL) on failure.

void RetMemory(void *addr)

Frees a block of PC memory, previously allocated by GetMemory().

C.5.5 Fork queue

There are often cases where an interrupt service routine or signal handler, which is entered asynchronously, needs
to switch to main program level. This may be because it needs to call code which is non-reentrant, such as the
majority of E11 entry points, or it needs to perform processing which would take too long to be done at interrupt
level. E11 does this by enqueueing requests for callbacks, and then processing them at “fork level”, which is what
the main program switches to whenever E11 is between PDP-11 instructions and there are items in the “fork
queue”. Callbacks are made serially (one at a time) until the fork queue is empty. Many PDP-11 operating systems
have a similar concept, so this may be familiar.

E11HANDLE GetForkQel(void)

Allocates a queue element which can be used to enqueue requests for callbacks at fork level. One queue element is
required for every possible request that can be outstanding at one time. The return value is a non-zero handle to
the queue element on success, or zero on failure.

void RetForkQel(E11HANDLE handle)

Frees a fork queue element that was obtained earlier from GetForkQel(). If a request is currently enqueued,
it is dequeued before the queue element is flushed. This routine would normally be called during the module’s

Installable Plug-ins 113

DllMain() exit processing.

void EnqueueFork(E11HANDLE handle,void (*crtn)(dword),dword parm)

Enqueues a request for a callback at fork level. handle is the queue element handle returned from GetForkQel(),
crtn is a pointer to the completion routine to call at fork level, and parm is an arbitrary 32-bit parameter which will
be passed to the completion routine. EnqueueFork() is unusual in that it may be safely called from an interrupt
service routine or signal handler.

The completion routine is called in the very near future, before the next PDP-11 instruction is fetched, as follows:

void stdcall crtn(dword parm)

parm is the same value that was passed to the EnqueueFork() call, and is for user-defined purposes, for example it
may be a pointer to per-instance data so that the same fork completion routine may be used for several different
devices. When the completion routine is called, E11 is running at main program level, and all entry points are safe
to call.

void DequeueFork(E11HANDLE handle)

Dequeues the previously queued fork request, if any, which was made using the specified handle. If no request had
been made, this call simply returns without doing anything.

C.5.6 Thread management

E11HANDLE SpawnThread(const char *name)

Creates a child thread. name is the address of an .ASCIZ string giving the name to be associated with the thread.
The return value is either -1 on error (no child thread has been created), 0 if this is the child thread (in which case
all registers have been destroyed except for EBP), or the positive thread handle of the child thread if this is the
parent.

void KillThread(E11HANDLE thread)

Kills a child thread. thread is the thread’s process handle as returned by SpawnThread. Threads should be killed
by the mainline rather than making an OS/2 DosExit() call of their own.

void StopThread(E11HANDLE thread)

Stops a child thread, by sending it a SIGSTOP signal and then waiting until a SIGCHLD signal is received. This is
necessary because on multi-CPU systems, SIGSTOP doesn’t take effect immediately if the child thread is currently
executing on another CPU. This call guarantees that the child thread is frozen before it returns. thread is the
thread handle of the child thread to stop.

114 Installable Plug-ins

void ContThread(E11HANDLE thread)

Continues execution of a child thread that was stopped by StopThread(). thread is the thread handle of the child
thread to restart.

C.5.7 Thread management

E11HANDLE E11API LoadModule(const char *name)

Calls the host operating system to load (or at least attach to) the module with the specified filename. Returns a
handle to be used in other calls, or 0 on failure.

void *(E11API GetSymbol(E11HANDLE handle,const char *symname))

Gets the address of a symbol within a module loaded with LoadModule, or NULL on error.

void E11API UnloadModule(E11HANDLE handle)

Unloads a module loaded with LoadModule.

Appendix D

Microcomputers

Ersatz-11 can be configured to emulate the following PDP-11-based microcomputers:

D.1 PDT-11/130

The PDT-11/130 is a microcomputer based on the LSI-11 chipset, built into a modified VT100 terminal with a
dual TU58 cartridge tape drive below the screen. It supports up to 60 KB of memory, which is unusual for a system
with no MMU. It runs RT-11 and accesses the TU58 tape using the PD.SYS device handler, which relies on code
in ROM to do the actual I/O. D Bit’s own reimplementation of this ROM is included as PDT130.PDP. Sample
E11.INI:

set cpu pdt11

load /rom pdt130 170010

mount dd0: drive0.dsk

mount dd1: drive1.dsk

assign pt: dd:

boot pt0: /rt11

D.2 PDT-11/150

The PDT-11/150 is a microcomputer based on the LSI-11 chipset. It has no expansion bus, and uses a pair of
8085A processors to simulate the approximate equivalent of a small PDP-11/03 configuration, but it could be built
more cheaply and was sold as a “smart” terminal system for data entry, etc. It uses RX01 drives but instead
of an RXV11 controller (which would have required a Q-bus) it has a WD1771 floppy controller chip, which one
of the 8085As used to simulate an almost-RXV11-like interface called the RXT11. Like the PDT-11/130, it runs
RT-11, again using the PD.SYS device handler with help from code in ROM, which D Bit has reimplemented and
is included as PDT150.PDP. Also like the PDT-11/130, it supports 60 KB of memory. Sample E11.INI:

set cpu pdt11

load /rom pdt150 170010

mount pd0: drive0.dsk

115

116 Terak 8510/a

mount pd1: drive1.dsk

boot pd0: /rt11

D.3 Terak 8510/a

The Terak 8510/a is a desktop microcomputer with a DEC LSI-11 processor and custom Q-bus cards for everything
else. It was produced in the late 1970s and early 1980s. Instead of using a separate console terminal, it has an
ASCII keyboard and a video display which can simultaneously display monochrome graphics at 320x240 pixels and
text at 80x24 characters, using a soft (reprogrammable) character set. It runs a customized version of RT-11, or
the UCSD p-System, or mini-UNIX. E11’s Terak 8510/a emulation is new in V6.1 and is likely to have rough edges.
Please report any bugs.

Sample Terak E11.INI:

set cpu 03 eis fis

; TK: takes over 177560, so move TT0: out of the way

set tt0: csr=177270

; graphics screen on CON2: (E11 console remains on CON1:)

assign tk: con2:

define key uarrow = chr$(26)

define key larrow = chr$(23)

define key rarrow = chr$(11)

define key darrow = chr$(12)

; some boot blocks check ROM signature to identify controller

load /rom null: 173000:173003

mou qx0: drive0.vol /sector

mou qx1: drive1.vol /sector

; switch to CON2:

primary 2

boot qx0:

Appendix E

PDP-11/74 and PDP-11/45
Multiprocessing
(EXPERIMENTAL/UNSUPPORTED)

In the late 1970s, DEC built prototype PDP-11 systems which had several modified PDP-11/70 CPUs (“PDP-
11/74s”) attached to a shared memory to form one large system, and extended RSX-11M to support these machines
(this project led to RSX-11M-PLUS). Also, the earlier PDP-11/45 had a limited ability to share its memory with
another processor. Ersatz-11 attempts to emulate these multiprocessor machines, however this feature is completely
unsupported. D Bit is happy to accept comments and problem reports about E11’s multiprocessing features but
makes no commitment to act on them. These features are provided for experimental uses only and are not
guaranteed to work reliably, or at all.

The vestigial PDP-11/74 code that’s still present in RSX-11M-PLUS was written for DEC’s internal testing only,
and is absolutely, completely unsupported by Mentec, HP, Compaq, or DEC. Please do not contact them about
anything having to do with PDP-11 multiprocessing. The RSX multiprocessing code and documentation are there
only because there was never any reason to rip them out, but multiprocessing was never officially supported.

A PDP-11/74 multiprocessor system consists of the following:

• 2–4 PDP-11/74 CPUs

• one or more MKA11 shared memory boxes

• DIP11A IIST (interprocessor interrupt and sanity timer) device

• console terminal for each CPU

• peripherals as usual

Below is a simple multiprocessor E11.INI file.

;

; Get decent response even w/o enough host CPUs

;

set idle release

117

118 CPUs and console terminals

;

; Set PDP-11/74 CPU model

;

set cpu 74

;

; Set number of emulated CPUs (changes prompt to CPA>)

;

set cpus=2

;

; Set up console for CPB

;

set tt1: bus=cpb

assign tt1: con2:

;

; Set up IIST ports (using default BUS settings of II0 = CPA, II1 = CPB, ...)

;

assign ii0-1:

;

; Mount disk and tape units

;

mount du0: rsx11mp.dsk

mount mu0: dump.tap

boot du0:

E.1 CPUs and console terminals

The SET CPU 74 and SET CPUS=n commands are used to set up the processors themselves. You must use both
commands, in either order. A SET CPU 74 command alone will just give you a single PDP-11/74 CPU. The SET

CPUS=n command (n is from 1 to 4) changes the number of CPUs in the system. When you add CPUs, the new
ones come up halted.

Unlike CPA (the main CPU that E11 starts with), the new CPUs do not get a console terminal set up for them
by default, so you must create one for each CPU after CPA. Use a SET TTn: BUS=x command to tell E11 that the
DL11 will be on CPx’s bus, and then use an ASSIGN TTn: command to attach it to a terminal device. As long
as it’s the lowest-numbered TT: device on that CPU’s bus, it will use the default console terminal addresses of
CSR=17777560 and VECTOR=60, so there will be no need to set those.

Whenever E11 is emulating more than one CPU, the “E11>” prompt changes to the name of whichever CPU is
operated upon by the execution/debugging commands. Initially this is “CPA>”, but you can change it by typing the
name of the CPU you want (e.g. CPB etc.). Any command which works on the CPU itself is affected by this. That
includes EXAMINE/DEPOSIT/LIST, REGISTER, GO, HALT, INITIALIZE, STEP, etc. ASSIGN/MOUNT/SET
commands (which add, remove, or configure peripherals) are not affected by the debugger focus, and may be issued
at any time. BOOT commands always apply to the CPU that owns the device being booted (according to its SET
. . . BUS=x setting).

Busses 119

E.2 Busses

Each PDP-11/74 processor has its own Unibus. E11 needs to know which bus each device is on, so most devices
have a SET ddcu: BUS=x command, which sets that controller to be on CPx’s bus. This command must be issued
before the command that creates the device. RSX has a corresponding parameter for each device, called the “URM”
or Unibus Run Mask. It’s expressed variously as an octal number (which represents a binary bitmap, with bit 0 =
CPA, bit 1 = CPB, etc.) or as the name of the CPU (e.g. CPA, CPB, etc.). E11 will accept either notation. The
fact that RSX always uses “Unibus” in its nomenclature is simply because the PDP-11/74 is a Unibus machine.
As far as E11 is concerned, they could just as easily be Q-busses.

Most devices are on bus A by default. The exceptions to this rule are the KW11L line clock and the DIP11A IIST
device. There’s one KW11L per CPU and it’s always on its host CPU’s bus, and DIP11A IISTs are useful only
in a multiprocessing system so they default to II0: = CPA, II1: = CPB, . . . since that’s how most users will use
them. To avoid causing confusion to users who aren’t using the multiprocessor feature, the bus is not shown by
SHOW commands unless a SET CPUS=2 (or higher) command is in effect, or the bus is other than A. The default
CSR/vector values are assigned on a per-bus basis, so the first device of a given type on a given bus always gets
the first default CSR/vector values, even if it’s not the first device of that type in the entire system. In particular,
the DIP11A IIST devices typically all use the same CSR/vector address, but each one is on a different bus. You
can always override a device’s CSR/vector values with a SET command.

E.3 II: — DIP11A interprocessor interrupt and sanity timer

Command syntax:

ASSIGN IIn:

Special switches: none

The DIP11A IIST device is the device used by CPUs in a multiprocessor system to interrupt and/or boot other
CPUs, and also to inform the rest of the system when one of the CPUs has crashed. It uses a serial bus with an
M8717 interface card in each processor. Since the system uses one common memory for all CPUs, there’s no need
for the IIST to be very complicated, it just makes other CPUs interrupt and it’s up to the operating system to set
up its internal tables to show what the interrupts mean. RSX does this by setting bits in a CPU’s $MPTAB slot.
The bit values are defined in [11,10]MPTBL.MAC.

The RSX $IIWAK routine (in [11,10]IISRV.MAC) uses a software polling loop to wait until the target CPU(s)
have accepted their interrupt(s), and returns an error mask if they don’t all respond in time. A limit of 64 K loop
iterations was generous on real hardware, where all CPUs are running continuously at the same speed (and the
IIST is a BR6 device so its interrupts are usually serviced immediately), but it can cause problems running under
emulation on a multitasking host operating system where threads can pause for many milliseconds at a time, any
time there are at least N+1 active threads on a PC with N CPUs.

E11’s workaround is to start counting PDP-11 instructions executed after a CPU sends interrupt(s) to other CPU(s).
Once the interrupting CPU has executed N instructions, it pauses its own execution (if necessary) until all the
CPUs it’s interrupting have also executed N instructions. On a quiet SMP PC with one real 80x86 CPU for each
emulated PDP-11 CPU and no active tasks besides E11, this pause will normally be short or nonexistent. But this
method means that $IIWAK will always succeed, even on a heavily loaded single-CPU host PC. The default value
of n has worked in testing, but if necessary it may be changed with the SET DELAY DIP11A 0=n command.

120 Configuring RSX-11M-PLUS for multiprocessing

SET II: controller parameters:
BUS=x set home bus segment to CPx
CSR=nnnnnn set CSR address to nnnnnn octal
PRIORITY=n set interrupt priority to n (4–7)
PRIORITY=DEFAULT set interrupt priority to default (BR6 for Unibus, BIRQ6 for Q-bus)
VECTOR=nnn set vector address to nnn octal

E.4 Configuring RSX-11M-PLUS for multiprocessing

These instructions are for RSX-11M-PLUS V4.6. Other versions are likely to have differences, which you’ll have to
figure out. As mentioned at the beginning of this chapter, this feature is unofficial and is not supported in any way
by Mentec or any of DEC’s incarnations. Not only is it unsupported, but there has never been much hardware to
test it on, so the configuration tends to be fragile, and you need to make careful choices and you may need to solve
some problems with the automatically-generated build scripts. If at all possible, you should probably try to install
completely from scratch (from a Mentec distribution tape), rather than trying to merge multiprocessor support
into an existing system. The fewer parameters you change at once, the better.

The first thing you need to do is to edit [200,200]SGNPREFIX.CMD, comment out .SETF MPRO (by putting “.;”
before it) and uncomment .SETT MPRO, before doing your @SYSGEN. When you’ve done this, suddenly SYSGEN
will know all about multiprocessor systems and will ask you many more questions when you run it. The important
answers are:

• Number of CPUs (obviously)

• IIST — the default CSR/vector addresses are OK, but see below

• MK11 (MKA11) memory boxes — you must define at least one, even though E11 doesn’t specifically emulate
them (E11’s memory is non-relocatable and always on line)

• Don’t specify “XX:” as your crash device, or you’ll get an undefined global

• Don’t include XDT

You can define other peripherals as usual. It will include a lot of RH70 Massbus adapters without asking you,
which is fine. It’s up to you whether you put devices on them or use some other kind of disks/tapes. Be careful
when including TMSCP tapes (“MU:”), since RSX’s default vector for a TMSCP controller is 260, which is the
same as the IIST so you should set one of them to something else. MU: is easier to move since its vector is set in
software so you won’t need to add a SET MU: command to your E11.INI file. Similarly, the default CSR and vector
for the TA11/TU60 DECcassette (“CT:”) are both the same as the IIST, and so is the priority so this is probably
not a coincidence (the TU60 wasn’t very popular and was mainly used on low-end systems so it may have been a
sensible device from which to borrow the CSR/vector). So you’ll have to move one or the other if you need CT:.

The rest of the build/save/bootstrap process is the same as always, unless you have errors to work out. Once
you have a bootable disk, just boot it the same as on a single-CPU system. Then use the CON ONLINE CPB
(etc.) command to boot the other CPU(s) and bring them on line — they aren’t included in a CON ONLINE ALL
command. It normally takes a little over four seconds to bring a new CPU up, because HRC’s boot code includes a
4-second delay between booting the CPU and interrupting it to see if it has come up successfully. The new CPU’s
console terminal is brought online implicitly when the CPU is started, so there’s no need for CON ONLINE YLB
(etc.) commands to wake up the consoles.

Ersatz-11’s multi-processing support is fragile, and it is easy to crash E11 by doing the wrong things, or by doing
the right things in the wrong order. Most emulated devices try to be multiprocessing-compatible, but only a few of

Multiple PDP-11s with non-shared memory 121

the physical device drivers have multiprocessing support. They are: disk image files, tape image files, RAM disks,
RAM tapes, CON: terminal sessions, Linux character devices, and Win32 COM: devices. Anything else is likely to
malfunction when attached to a processor other than CPA.

Currently it is important that a processor be created (with SET CPUS=n) before any devices are attached to it with
MOUNT or ASSIGN commands. The SET . . . BUS=x command that sets the bus must also come before the MOUNT or
ASSIGN. This applies even to TU58 controllers, which are not actually attached to a bus but must handle events
on the same CPU as the DL11 to which they are connected. If this requirement is not satisfied, data structures
may be corrupted.

There are other known bugs: currently it appears to be impossible to bring more than three CPUs online under
E11 — CON gives an “offline” error on whichever one you do last, no matter which one it is (not just CPD). This
is presumably because of a bug in E11. Also, sometimes a CPU will halt for no apparent reason. D Bit makes no
commitment to fix these or any other multiprocessing-specific bugs, but would be very interested in hearing any
input on what might be going wrong.

E.5 Multiple PDP-11s with non-shared memory

There are a few scenarios where it may be useful to have multiple PDP-11 CPUs which are completely separate.
This is generally no different from running separate instances of E11 under a multi-tasking host OS, except on
DOS where there can be only one instance. Creating multiple separate PDP-11s is done the same way as creating
a multiprocessor PDP-11/74 system, except that the SET CPU NOSHAREDMEM command must be used to give
each CPU private memory, and since there are no IISTs, each processor must be booted individually.

Here’s a multiprocessor E11.INI file for separate CPUs:

;

; Set PDP-11/45 CPU model (all must be the same) with private memory

;

set cpu 45 nosharedmem

;

; Set number of emulated CPUs (changes prompt to CPA>)

;

set cpus=2

;

; Set up console TTY for CPB

;

set tt1: bus=b

assign tt1: con2:

;

; Mount disks (move DKB: controller to CPB)

;

set dkb: bus=b

mount dka0: rk05a.dsk

mount dkb0: rk05b.dsk

;

; Boot CPUs (do CPA last since it will take the CTY away from E11.INI)

;

boot dkb0:

boot dka0:

122 FASTBUS: — Fastbus memory on detachable Unibus segment

E.6 DPDISK: — Dual-ported disk

This pseudo-device makes any block device appear to be dual-ported, so that it may be mounted on two different
controllers (typically an RK611, RH11, or RH70, since they supported real dual-ported drives, but this isn’t a
requirement in E11), normally attached to different CPUs of a multi-processor system. Normal usage is as follows:

mount dpdiska: rsx.dsk

mount dba0: dpdiska0:

set dbb: bus=b

mount dbb0: dpdiska1:

This mounts the same image file (which could also be a RAM disk, or any other supported block device) as DB0: on
both CPA and CPB. Each DPDISKc: controller letter is a dual-ported drive, which must be created first. DPDISK:
units 0 and 1 on that controller letter are the drive’s two ports which can then each be mounted on a separate
emulated disk controller.

E.7 DPTAPE: — Dual-ported tape

This is just like DPDISK:, but for tapes. No PDP-11 tape was inherently dual-ported, so presumably this must be
a TM03 attached to an RH01.

E.8 FASTBUS: — Fastbus memory on detachable Unibus segment

The PDP-11/45, PDP-11/50, and PDP-11/55 are sometimes described as having dual Unibusses. What this
actually means is that any internal MS11-A/B/C semiconductor memory which is connected to the CPU’s private
“Fastbus” is presented as a Unibus slave for NPR purposes through a separate pair of Unibus in/out slots (“Unibus
B”), while core memory (or any kind of standard Unibus memory) appears on the regular I/O bus (“Unibus A”)
with all of the system’s other Unibus peripherals, including the three quad SPC slots in the CPU backplane itself.

Normally this is all connected together as one Unibus using an M9200 jumper in the A/B positions of slots 26 and
27 of the processor backplane, but it need not be. The internal semiconductor memory may be separated, in which
case it is not available for NPRs from peripherals on Unibus A.

This separate Unibus B can be connected to a separate DMA-only bus (using an M9300 to grant NPRs in place of
a processor), for use e.g. on the “Unibus B” side of an RH11 Massbus adapter. Or, the Unibus B connections can
be used to make the internal memory act as a slave device to an entirely separate processor, such as Unibus A of
another PDP-11/45. In this way a multi-processor system can be built where each processor makes a portion (the
Fastbus part) of its memory available to another processor or processors. The memory controller is dual-ported
between its PDP-11/45 host and Unibus B. The catch is that a system with split Unibusses is unable to use DMA
to access its own internal memory, so presumably it will also have some Unibus memory for use with its mass
storage.

A Fastbus memory is created with the following command:

ATTACH FASTBUSp: start:end

This creates a block of memory on processor CPp (which is the only processor that can’t access the memory by

IPL: — Internal inter-processor link 123

DMA), covering the specified absolute address range. This range must be outside of regular memory, so the I/O
page will probably have to be enlarged (using the /IOPAGE:nnnn switch on the E11 startup command line so that
the desired address range begins at or above the line between plain memory and I/O space.

The memory is attached to other processors by issuing the same ATTACH commands (with the identical address
range, or with the address range omitted) while the other processor has the debugger focus (because of the CPA,
CPB etc. commands). Unlike real hardware, E11 allows the same memory to be visible to more than two processors.
If the very first ATTACH command gives one processor in the FASTBUSp: device name but is issued while another
processor has the debugger focus, then the memory is connected to both processors and no further commands are
necessary.

E.9 IPL: — Internal inter-processor link

E11 includes a virtual inter-processor link device which can connect two emulated DR11C (DRV11) or DR11W
(DRV11WA) ports to each other, for very high-speed communication between processors of a multi-processor
system. The typical usage is as follows:

assign xa0: ipla0:

set xa1: bus=b

assign xa1: ipla1:

In this example, XA0: is on processor CPA by default, and XA1: is explicitly put on CPB. Each IPLc: controller
letter represents a link, and units 0 and 1 are the two endpoints of that link.

Appendix F

Dates and Times

Ersatz-11 has several features that facilitate passing date and time information back and forth between the host
system and the PDP-11 operating system. The PC clock can be read from the PDP-11, and E11 can simulate
a software bootstrap of RT-11 and RSTS/E so that these systems will pick up the current time as if they were
started with a warm boot from a monitor that was already running.

F.1 Booting

RT-11 and RSTS/E both have methods for discovering whether they were software booted from another running
RT-11 or RSTS/E monitor, and if so they can “inherit” the time and date from that monitor. E11’s BOOT command
can simulate this situation. If you use it with a /RT11 or /RSTS switch, it obtains the current PC date and time
and passes them on to the PDP-11 operating system.

E11’s keyscript language has commands which allow composing a time and/or date string in almost any format, so
that it may be entered with a single keystroke. The default keyscript for the F12 key sends the current time and
date in a format accepted by recent versions of RSX, so it may be pressed in response to the date/time prompt
at system startup. See Appendix A for information on keyscript commands, and type SHOW KEY F12 at the E11
command prompt to see how the existing binding works.

Newer versions of DEC operating systems have support for the KDJ11E TOY clock, which E11 emulates using the
host operating system’s clock. For example, the RSX “TIM /SYN” command will read the RSX time from the PC,
and “TIM /SETTOY” will set the PC clock from the RSX time. These commands work only if RSX has detected a
KDJ11E-based CPU (i.e. PDP-11/93 or PDP-11/94), however E11 can add the TOY clock to any CPU emulation
by adding ASR to the end of the SET CPU command (since the TOY clock is accessed through the Additional Status
Register). A TOY.TSK program is available from ftp.dbit.com which has /SYN and /SETTOY switches which work
just like the TIM command, but with no restriction on the CPU type, and it doesn’t have the year 2000 problem
that TIM /SYN did in earlier versions of RSX.

F.2 PC clock

PCs don’t have a 50/60 Hz line frequency clock, so E11 simulates the KW11L style clock by reprogramming the
PC’s crystal-controlled interval timer for 50 or 60 Hz (the SET HZ command selects which frequency, the default is

124

Dates and Times 125

60 Hz). These speeds can not be produced precisely by the PC’s interval timer (it uses rather odd numbers since
its master clock is the 14.31818 MHz ISA bus clock fed into a divide-by-12 counter), so E11 programs it as close as
possible to the right value, and then uses fractional math to decide when to insert “leap ticks” so that the average
rate will be exactly 50 or 60 Hz. In practice, this is not perfectly accurate because many (or most) PCs don’t have
a very accurate 14.31818 MHz clock to begin with. So their clocks tend to gain or lose time regardless of what
applications software or operating system is running.

E11’s solution to this is the SET CLOCK command, which allows adjustment of the actual master clock frequency
value (which can be specified in 1 Hz increments) which E11 uses to calculate the interval clock divisor and
schedule leap ticks. There’s no need to actually measure the master clock frequency on the PC’s motherboard,
simply experimenting with values can greatly improve the accuracy and of course letting the system run for a while
and then checking its clock will allow you to figure out the exact drift.

F.3 Year 2000 issues

Ersatz-11 has no year 2000 issues of its own. It does very little manipulation of dates, and when dates are handled
internally it uses 16 bits to hold the year, which is enough to last until the year 65,535 AD. However problems do
occur when translating dates to and from the formats required by the various PDP-11 operating systems, the PC
operating system, and the KDJ11E TOY clock. Also the YEAR2 keyscript command sends only 2-digit years, but
it’s there for the specific purpose of working with non-Y2K-compliant PDP-11 software. If the PDP-11 software
can handle 4-digit dates, use YEAR4 instead, which is what’s used in the default keyscript for F12 anyway.

F.3.1 KDJ11E TOY clock

The Dallas Semiconductor DS1215 clock chip used in the KDJ11E battery-backed time-of-year (“TOY”) clock
contains only two digits for the year. Therefore it inherently suffers from the year 2000 bug, and so must any
accurate emulation of it, including the one in E11, otherwise it would be incompatible with PDP-11 software
designed for the real thing. However this is not as bad as it might seem. Since the TOY clock is used only to
hold the current time, the only ambiguity that the PDP-11 software has to resolve is what century it is now. This
is as opposed to dates held in databases, file system timestamps, etc., which can represent past and future dates
and so must not be ambiguous. The latest versions of most PDP-11 operating systems have been updated to use a
100-year window when interpreting the year read from the TOY clock. For example 80–99 can be taken to mean
1980–1999, and 00–79 would mean 2000–2079. Future PDP-11 operating system releases can move this window
(at this point 00–99 might as well mean 2000–2099), so this scheme can be extended indefinitely. Recent versions
of RSX-11M-PLUS cleverly use the TOY clock’s day-of-the-week field to figure out what century this must be, so
there’s no need for a 100-year window.

F.3.2 Dates in RT-11 and TSX-Plus

Older versions of RT-11 used only 5 bits to store the year, as the number of years since 1972. This format stopped
working on 01-Jan-2004, and the older RT-11 versions (V5.6 and earlier) have year 2000 problems too so they had
already stopped working correctly anyway. Newer versions of RT-11 adapt two previously unused bits in the date
word to extend the year offset to 7 bits, which will last until 31-Dec-2099. RT-11 V5.7 is the first version that fully
implements this change in all utilities as well as the monitor. TSX-Plus V6.50 also supports the 7-bit year field, so
when installed on top of RT-11 V5.7 it too will last until 31-Dec-2099.

126 Dates and Times

F.3.3 Dates in RSX

RSX’s internal date format uses a 16-bit word to hold the number of years since 1900. This format will last for
many millennia, and it’s unusual in that it allows going back all the way to 1900 so that dates in the low 2000s
really are ambiguous when expressed in only two digits. Current versions of RSX accept four-digit years in user
commands and process them correctly, but older versions are limited to two-digit years which are all assumed to
be in the 1900s. Also, the Files-11 ODS-1 disk structure used by RSX and IAS uses only 2-digit years, stored as
ASCII digits rather than binary values. Newer versions of RSX extend this format for several more centuries by
allowing the “10s” digit to take on the value of characters which follow “9” in the ASCII code.

F.3.4 Dates in RSTS/E

RSTS/E uses the same date format as the old DOS/BATCH system. This consists of the number of years since
1970, times 1000 (decimal), plus the day within the year (1 = January 1), stored as a 16-bit word. In older
versions of RSTS/E this word was signed, so its maximum usable value was 32365., or 31-Dec-2002. Again, year
2000 problems with INIT.SYS’s time/date parser prevented getting even that far. Newer versions of RSTS/E have
changed to using an unsigned date word (negative values were never allowed anyhow), so now it lasts until 31-Dec-
2035. Unfortunately RSTS/E’s extension to the date format is not applicable to the few remaining DOS/BATCH
systems, since DOS/BATCH uses the sign bit of the date word in directory entries to flag a file as contiguous, so
it’s not available for expansion of the date word. Multiplying the year offset by 1000 makes for very sparse usage
of the available date word values, so there is room for expansion of the date format (using day-within-year values
from 367 to 999) if that ever becomes necessary, but updates to PDP-11 software will be required.

F.3.5 Dates in Fuzzball

Although the Fuzzball operating system emulates the RT-11 system calls, it actually uses its own 14-bit date format
internally instead of RT-11’s format. This is encoded as the number of days since 01-Jan-1972, so it ran out in
2016. Fuzzball has year 2000 problems, but replacement modules are available from ftp.dbit.com to make it work
until 2016. The date format could be extended to 16 bits, but that would require relocating the flags that currently
go in the high 2 bits of the date word, and the .GDAT system call would require an incompatible change to support
that.

F.3.6 Dates in Unix

Unix (and Unix-compatible) systems normally store dates as a signed number containing the number of seconds
since midnight UTC on 01-Jan-1970. The type that this value is stored in (“time t”) is normally a 32-bit signed
integer (in some cases this is true even on Unix systems that run on 64-bit processors), which means that this
format will run out in early 2038. This limit applies both to PDP-11 Unix systems being run under emulation, as
well as 80x86 Unix or Linux systems being used as the host environment for Ersatz-11.

